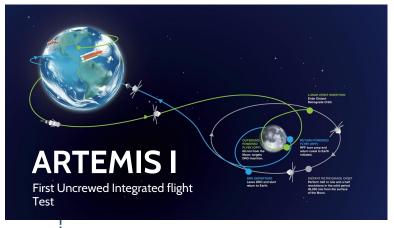


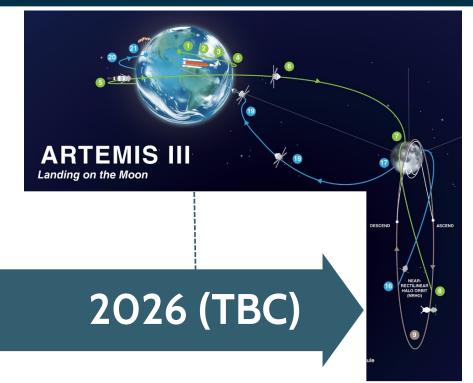
ERFNet Data Hub ALTEC/ESA Project Overview

XVI FOOT Collaboration Meeting, Naples (Italy)

L. Scavarda on behalf of ERFNet Team

ALTEC UNCLASSIFIED – For Official Use Only


All information contained in this document is property of ALTEC S.p.A. All rights reserved. This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of ALTEC S.p.A."


Background

Human Space Exploration – ARTEMIS Program

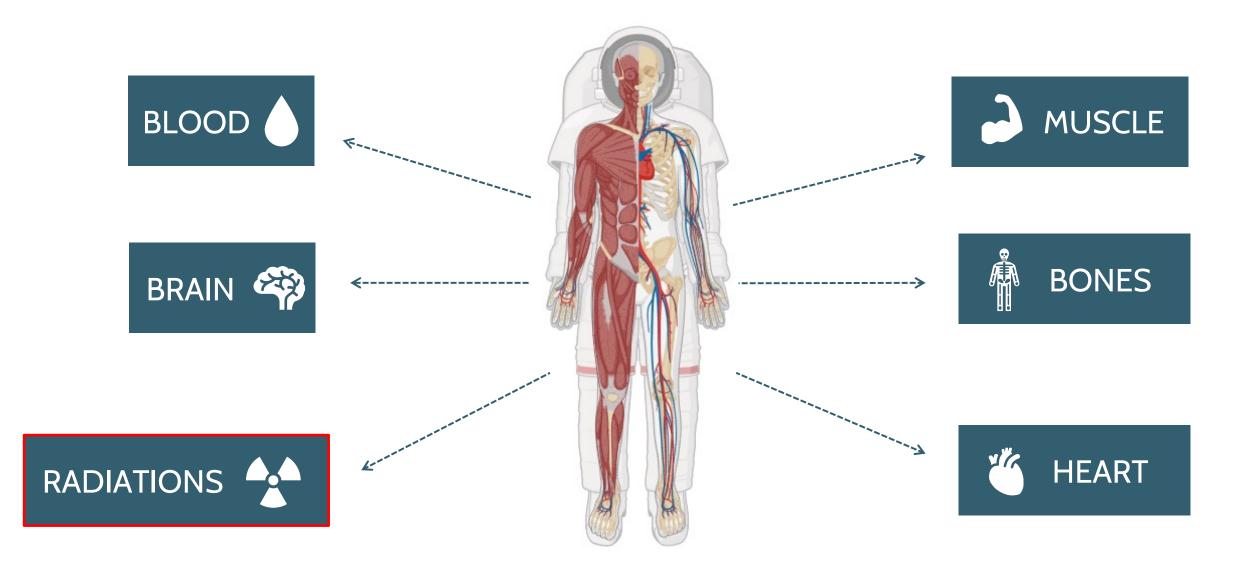
ARTEMIS I mission aimed to test the Space Launch System (SLS) rocket and Orion spacecraft in preparation for future crewed lunar missions, serving as a crucial step towards NASA's Artemis program

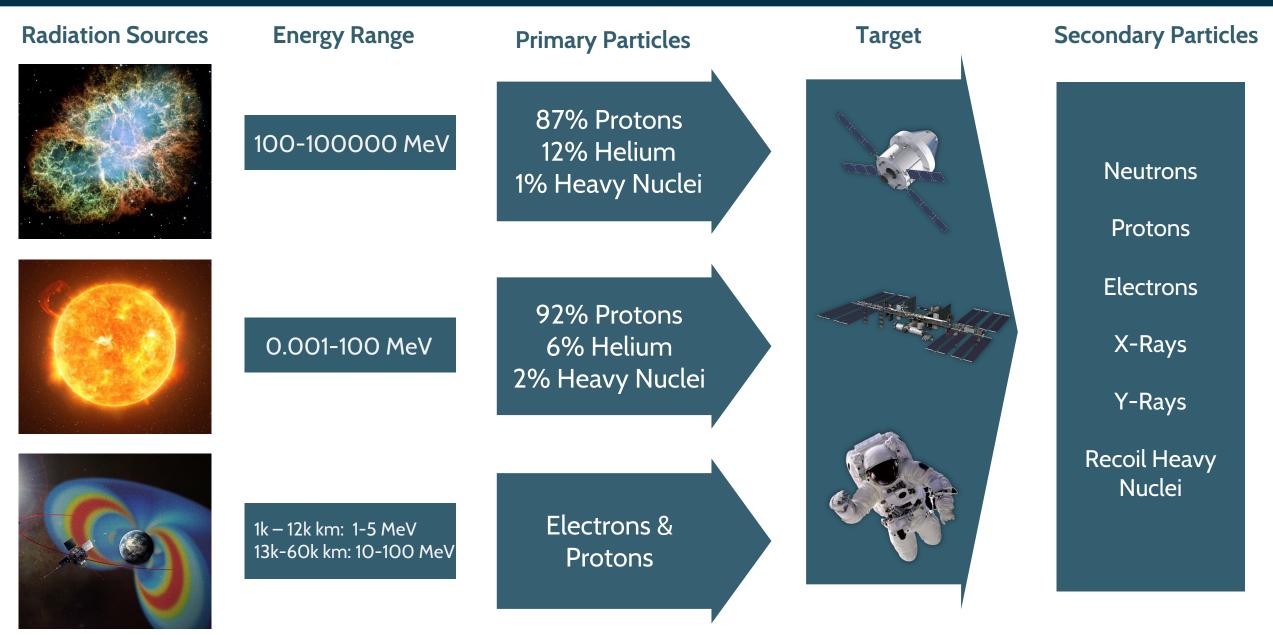
2022

2025 (TBC)

ARTEMIS II will be the first crewed mission of NASA's Artemis program, sending astronauts aboard the Orion spacecraft on a journey around the Moon, opening the way for future human exploration missions.

ARTEMIS III will mark the return of humans to the lunar surface, with astronauts landing near the Moon's South Pole. They will conduct scientific research and test technologies for sustainable lunar exploration.


Human Space Exploration


Human Space Exploration

Space Radiation Environment

L.Scavarda

22/06/24

The shift from LEO to deep space has important implications for radiation research and there is the need to improve space radiological protection strategy and risk assessment for astronaut missions:

Radiation Environment Measurement

Need to improve knowledge on radiation environment for mission planning and design

More particle and energy deposit spectra are needed to validate and update models

It is required to develop new instrumentation, capable of providing the relevant information and also the analysis of data from existing detector systems, both on the surface of the Moon and on other locations, to intercompare and intercalibrate the new devices data

The shift from LEO to deep space has important implications for radiation research and there is the need to improve space radiological protection strategy and risk assessment for astronaut missions:

Radiation Environment Measurement

Dosimetry and radiation risk estimation

Need to improve knowledge on radiation environment for mission planning and design

More particle and energy deposit spectra are needed to validate and update models

It is required to develop new instrumentation, capable of providing the relevant information and also the analysis of data from existing detector systems, both on the surface of the Moon and on other locations, to intercompare and intercalibrate the new devices data For exploration missions actively powered radiation detectors for the crew are required, which provide both "real time dose readings" and physical parameters for risk estimation.

Individual bio-dosimetry needs to be implemented and compared with the results of radiation detectors in order to contribute to the risk estimation.

The shift from LEO to deep space has important implications for radiation research and there is the need to improve space radiological protection strategy and risk assessment for astronaut missions:

Radiation Environment Measurement

Need to improve knowledge on radiation environment for mission planning and design

More particle and energy deposit spectra are needed to validate and update models

It is required to develop new instrumentation, capable of providing the relevant information and also the analysis of data from existing detector systems, both on the surface of the Moon and on other locations, to intercompare and intercalibrate the new devices data Dosimetry and radiation risk estimation

For exploration missions actively powered radiation detectors for the crew are required, which provide both "real time dose readings" and physical parameters for risk estimation.

Individual bio-dosimetry needs to be implemented and compared with the results of radiation detectors in order to contribute to the risk estimation.

Radiation propagation tools and models

Radiation propagation tools provide significant calculated radiation data for a specific planned mission scenario and can be benchmarked with data from sensors measuring relevant parameters in new environments.

GCR and SPE models also demand a detailed benchmarking against each other and against measurements.

Transport codes, based on Monte Carlo (GEANT4, FLUKA, PHITS) or on deterministic (HZETRN) codes need further developments including updates for missing data in nuclear cross section measurements.

The shift from LEO to deep space has important implications for radiation research and there is the need to improve space radiological protection strategy and risk assessment for astronaut missions:

Radiation Environment Measurement

Need to improve knowledge on radiation environment for mission planning and design

More particle and energy deposit spectra are needed to validate and update models

It is required to develop new instrumentation, capable of providing the relevant information and also the analysis of data from existing detector systems, both on the surface of the Moon and on other locations, to intercompare and intercalibrate the new devices data Dosimetry and radiation risk estimation

For exploration missions actively powered radiation detectors for the crew are required, which provide both "real time dose readings" and physical parameters for risk estimation.

Individual bio-dosimetry needs to be implemented and compared with the results of radiation detectors in order to contribute to the risk estimation.

Radiation propagation tools and models

Radiation propagation tools provide significant calculated radiation data for a specific planned mission scenario and can be benchmarked with data from sensors measuring relevant parameters in new environments.

GCR and SPE models also demand a detailed benchmarking against each other and against measurements.

Transport codes, based on Monte Carlo (GEANT4, FLUKA, PHITS) or on deterministic (HZETRN) codes need further developments including updates for missing data in nuclear cross section measurements.

Radiation storm forecasting

Forecasting SPEs is very important for deep space operations for efficient planning and use of countermeasures complying with the "As Low As Reasonable Achievable" (ALARA) principle for astronaut protection.

SPE forecasting utilizes knowledge of solar physics and particle radiation dynamics either by radiation transport models or by analytical models.

Forecasting from physics based models lacks the accuracy needed for human protection.

Now-casting, based on precursor measurements combined with studies of previous SPEs, are essential for effective warnings

Development priorities include a system to exploit forecast methods and accurate measurements of the external field for now-casting and data assimilative forecasts.

The shift from LEO to deep space has important implications for radiation research and there is the need to improve space radiological protection strategy and risk assessment for astronaut missions:

Radiation Environment Measurement	Dosimetry and radiation risk estimation	Radiation propagation tools and models	Radiation storm forecasting
Need to improve knowledge on radiation environment for mission planning and design	For exploration missions actively powered radiation detectors for the crew are required, which provide both "real time dose readings" and physical	Radiation propagation tools provide significant calculated radiation data for a specific planned mission scenario and can be benchmarked with data from	Forecasting SPEs is very important for deep space operations for efficient planning and use of countermeasures complying with the "As Low As
More particle and energy deposit spectra are needed to validate and update models	parameters for risk estimation.	sensors measuring relevant parameters in new environments.	Reasonable Achievable" (ALARA) principle for astronaut protection.
It is required to develop new instrumentation, capable of providing the relevant information and also the analysis of data from existing detector	implemented and compared with the results of radiation detectors in order to contribute to the risk estimation.	GCR and SPE models also demand a detailed benchmarking against each other and against measurements. Transport codes, based on Monte Carlo	SPE forecasting utilizes knowledge of solar physics and particle radiation dynamics either by radiation transport models or by analytical models.
systems, both on the surface of the Moon and on other locations, to intercompare and intercalibrate the new devices data		(GEANT4, FLUKA, PHITS) or on deterministic (HZETRN) codes need further developments including	Forecasting from physics based models lacks the accuracy needed for human protection.
new devices data		updates for missing data in nuclear cross section measurements.	Now-casting, based on precursor measurements combined with studies of previous SPEs, are essential for

An **European Radiation Risk Model (ERMM)** to better characterize mission radiation risks to astronauts is required.

Only through a harmonized and cohesive Scientific Community we will be able to fill these gaps.

L.Scavarda

22/06/24

effective warnings

assimilative forecasts.

Development priorities include a system to exploit forecast methods and accurate measurements of the external field for now-casting and data

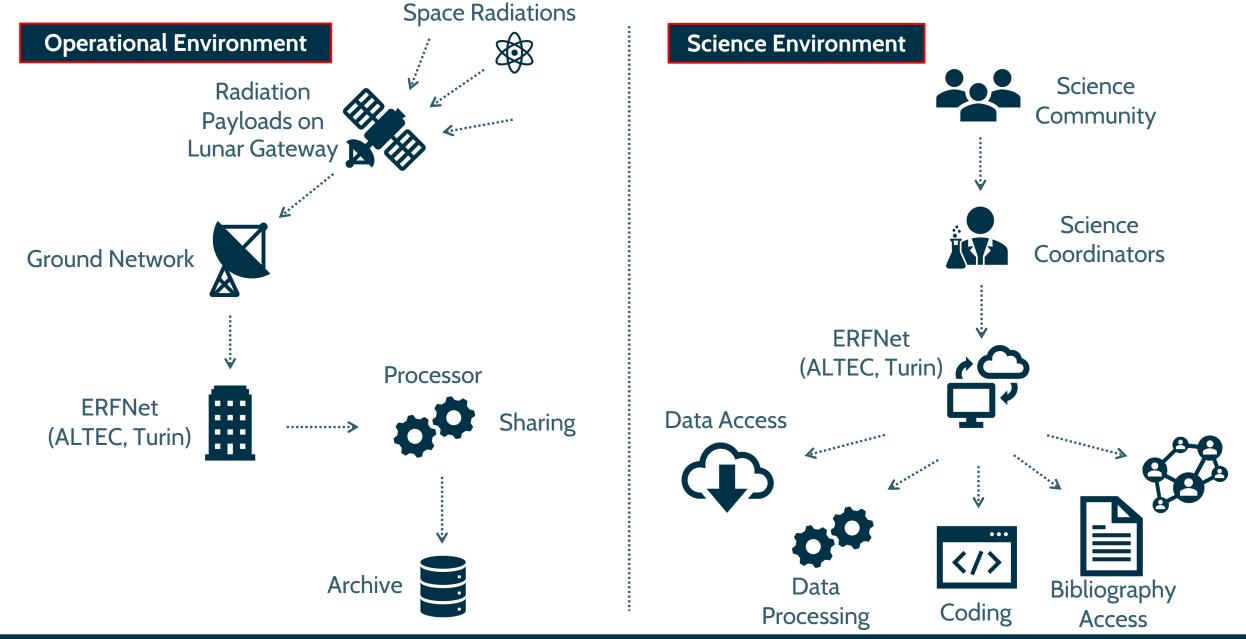
European Radiation Facility Network – Data Hub

Collaboration

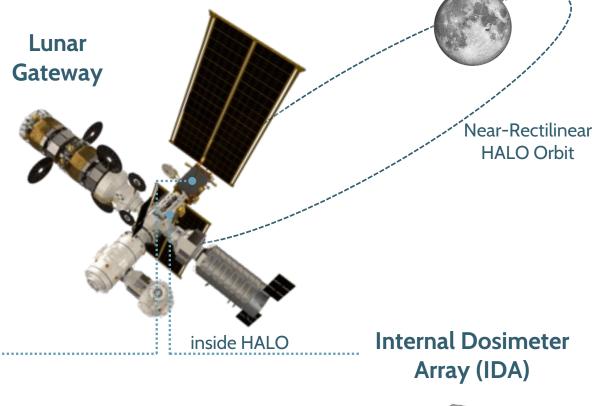
ERFNet fosters interdisciplinary collaboration, enabling experts in medicine, physics, biology, engineering, and other fields to exchange knowledge and insights, ultimately advancing our understanding of space radiation effects and enhancing our ability to mitigate risks for future space exploration missions.

Data Hub

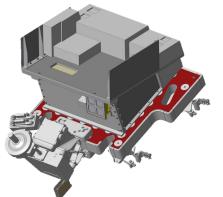
ERFNet offers a collaborative framework where scientists and researchers from diverse disciplines can come together to access and exploit data, write code, perform Monte Carlo simulations, and subsequently share data, projects, and results.


Network

ERFNet serves as a Data Hub for international partnerships, connecting researchers worldwide and facilitating the exchange of expertise and best practices in the field of Space Radiation research.



ERFNet Environments



European Radiation Sensor Array (ERSA)

outside PPE module

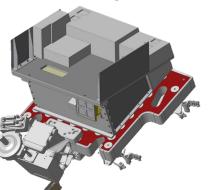
Payload Instruments: European Active Dosimeter (EAD) Standard Environment Radiation Monitor (SREM) Next-Generation Radiation Monitor (NGRM) ICARE-NG Time-Pix detector (HardPix) Magnetometer (MAGIC) Payload Instruments: European Active Dosimeter (EAD) Time-Pix detector (MediPix) TRITEL DSPACE+PADLES

Operational Environment

Near-Rectilinear

HALO Orbit

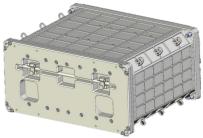
Lunar Gateway will host two ESA payloads: ERSA and IDA which are a collection of particle detectors


ERFNet will receive the raw ERSA and IDA telemetry and it will handle the IDA and ERSA (TBC) data processing from the engineering levels (LO) to the scientific levels (L2)

The data will be accessible to limited group of users , such as ESA point of contacts, Instrument Teams and Science Teams

Not later than 6 months the data will be forwarded to the Science Environment and available to the broader Scientific Community for downloading and science exploitation

European Radiation Sensor Array (ERSA)

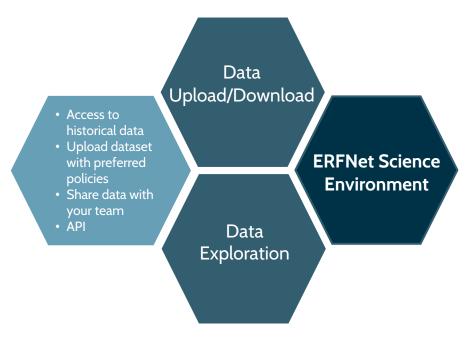

outside PPE module

Payload Instruments: European Active Dosimeter (EAD) Standard Environment Radiation Monitor (SREM) Next-Generation Radiation Monitor (NGRM) ICARE-NG Time-Pix detector (HardPix) Magnetometer (MAGIC)

inside HALO

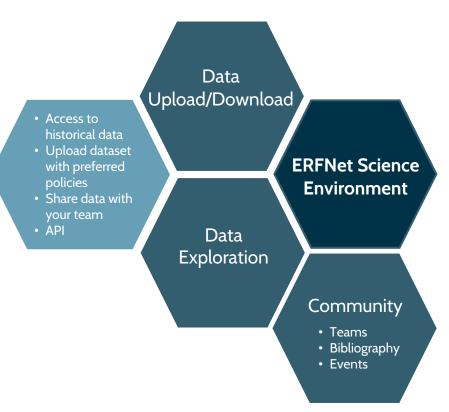
Internal Dosimeter

Array (IDA)


Lunar

Gateway

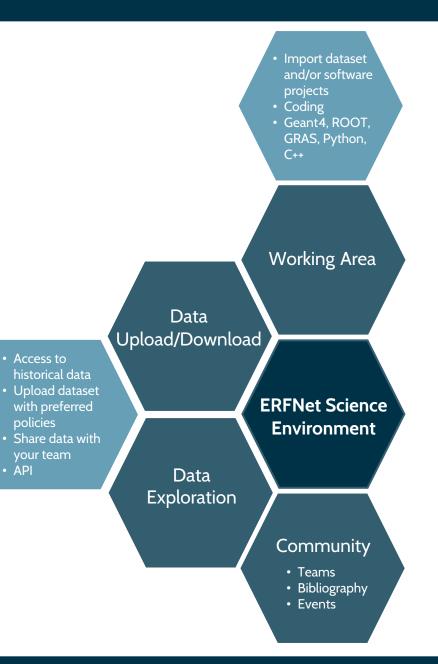
The environment wants to foster new collaboration among scientists and harmonize the existing knowledge via:


• **Data sharing**: access, upload, download data from present and historical dataset

The environment wants to foster new collaboration among scientists and harmonize the existing knowledge via:

- **Data sharing**: access, upload, download data from present and historical dataset
- **Teams**: create and/or join teams of scientists and share data, software products, etc.
- **Reach scientists around Europe and beyond**: find new contacts, chat and exchange idea, insights, etc.
- **Researches sharing**: upload, share papers, presentation, results and reach more experts
- **Find or submit new events**, conferences, workshop in Space Radiation and Radioprotection fields

19



The environment wants to foster new collaboration among scientists and harmonize the existing knowledge via:

- **Data sharing**: access, upload, download data from present and historical dataset
- **Teams**: create and/or join teams of scientists and share data, software products, etc.
- **Reach scientists around Europe and beyond**: find new contacts, chat and exchange idea, insights, etc.
- **Researches sharing** upload, share papers, presentation, results and reach more experts
- Find or submit new events, conferences, workshop in Space Radiation and Radioprotection fields

In addition, the environment provides:

 Personal working areas to store datasets and create own projects: an online remote desktop to import user assets, coding and to benefit of data analysis and MC simulation tools pre-configured in the environment. This allows easy access to software tools such as ROOT, G4, GRAS, etc. acting also as an easy tool for workshop preparation, tutorial and training

The environment wants to foster new collaboration among scientists and harmonize the existing knowledge via:

- **Data sharing**: access, upload, download data from present and historical dataset
- **Teams**: create and/or join teams of scientists and share data, software products, etc.
- **Reach scientists around Europe and beyond**: find new contacts, chat and exchange idea, insights, etc.
- **Researches sharing**: upload, share papers, presentation, results and reach more experts
- **Find or submit new events**, conferences, workshop in Space Radiation and Radioprotection fields

In addition, the environment provides:

- Personal working areas to store datasets and create own projects: an online remote desktop to import user assets, coding and to benefit of data analysis and MC simulation tools pre-configured in the environment. This allows easy access to software tools such as ROOT, G4, GRAS, etc. acting also as an easy tool for workshop preparation, tutorial and training.
- Availability of computational resources to submit batch mode analysis and simulation tasks
- APIs to run analysis/simulation tasks, access to data, etc.

L.Scavarda

22/06/24

- The Scientific Environment is open to the broader Science Community involved in the field
- Through the public Community Webpage, via <u>https://ekb.ersse.altecspace.it</u>, the access credential (username and password) can be requested

\leftarrow	$ ightarrow$ C $rac{1}{2}$	https://ekb.k8s.altecspace.it	80% 🖒	\bigtriangledown \checkmark	٠	பி
RFN	let				<u>}</u> @	esa
		ERFNet Data Hub a new access for the European Space Radiation rese	earch			
	Humans in Space					
		Human space exploration is entering a new phase of exploration beyond Earth. By 2030, we expect re- increased preparations for sending humans to Mars.	gular trips to the Moon's orbit and s	surface, along with	÷	
	What is Lunar-Gateway?					
		way will be a space station in lunar orbit enabling long-term human exploration at the Moon and new opp em to support NASA's Artemis campaign.	portunities for scientific discovery a	ıs a foundational	÷	
	What are Space Radiation	is?				
		Space Radiations, also called "Cosmic Rays", are energetic particles (charged, x-ro Universe.	ays, y-rays) produced in space that	t travel across the	÷	

0.003

0.0025

0.002

0.0015

0.001

0.0005

Absorbed Dose [mGy/d]

Project on ERFNet - Example

<u>Final Goal</u>: Parameterization of the dosimetric contribution of trapped protons as a function of rigidity

Preliminary steps:

- 1. Statistics quality test
- 2. Once found the more stable statistic for primary particles, it was tried to replicate a well-known case: the absorbed dose data acquired on ISS from DOSTEL instrument
- 3. The simulation predictions were validated with absorbed dose data collected by DOSTEL provided by DLR team (T. Berger and D. Matthiä)
- 4. DOSTEL equivalent dose comparison
- <u>Source</u>: Fe spectra from DLR models. Simulation with 10k, 100k, 700k primaries
- <u>Target</u>: 100 concentric water layers of 2.5 mm each

40

60

80

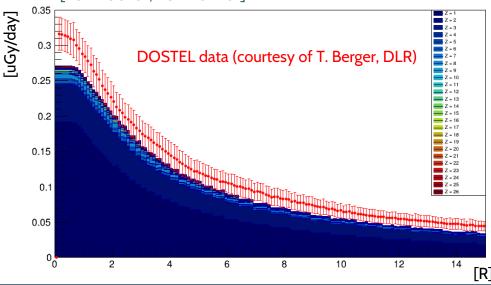
Score: absorbed dose as function of target layer

10000 Primaries

100000 Primaries


700000 Primaries

20


100

Layers (Thickness = 2.5 mm)

Part of Valetti PhD Thesis

- <u>Shielding</u>: Columbus-like shielding
- Target: water sphere of 25 cm
- Score: absorbed dose as function of rigidity/energy
- <u>DOSTEL data</u>: Comparison with DOSTEL data of [2019-06-01, 2019-09-01]

- Demo of ERFNet vO to ESA: 30/11/2023
- Demo of ERFNet beta version to ESA and Instrument Teams: 18/04/2024
- ERFNet beta version released on: Q2/Q3 2024
- Current Beta Users from:
 - Space Environment and Effects, ESTEC, ESA
 - Space Exploration Innovation Hub, JAXA
 - Imperial College, London
 - ADVACAM Radiation Imaging Solutions, Prague
 - Space Applications & Research Consultancy (SPARC), Athens
 - Institute of Aerospace Medicine, DLR, Cologne
 - University of Turin Physics Department

ERFNet v1 will be released in September (TBC) with a following testing period

Ambitious and challenging goal:

ERFNet aims at becoming a support tool for scientist and researches involved in the Space Radiation/Radioprotection fields to face the upcoming challenges (to the Moon and beyond). ERFNet wants to boost the Scientific Community cohesiveness, in order to work towards answering the questions still open in the field.

Backup

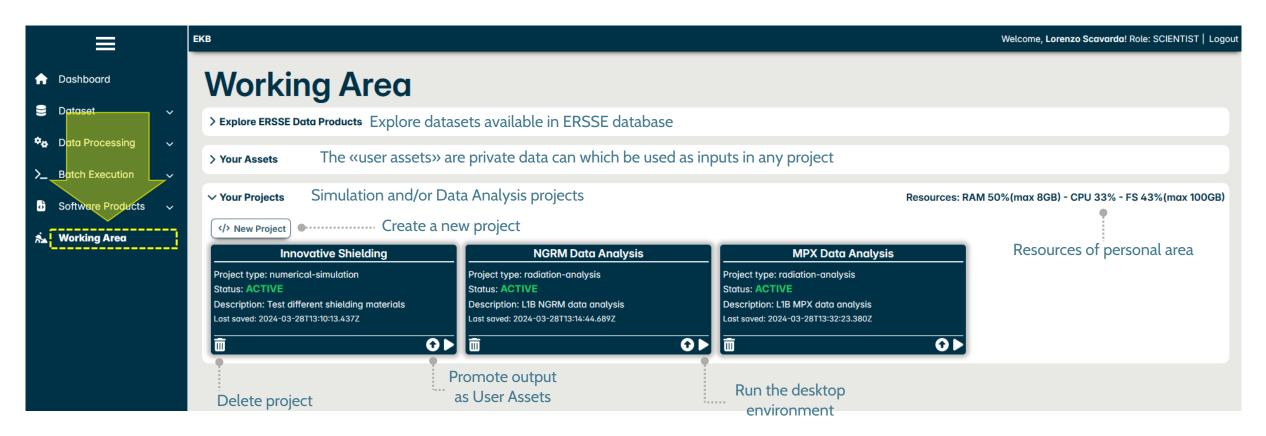
		ЕКВ						Welcome, Lorenzo Sco	ivarda! Role: SCIENTIST I	Logout
Dashboard	^		I Explo	ration						
Data Exploration		Select			\checkmark \otimes	Ingestion time in				
Data Upload Data Requests		Current query:	select * from products			ERFNet	Datase	t covarage		
Data Processing	~	Project	1 Instrument	\$ Processing Level	¢ Name	Ingestion Time	\$\$ Start Coverage	‡ End Coverage	\$ Actions	
Batch Execution	~	>	Full setup	N/A	gras_test_20_input	2024-03-18 11:30	2024-03-10 10:04	2024-03-11 10:04	* 0	
		>	Full setup	LO	gras_batch_test_input	2023-11-30 10:05	2023-11-14 10:04	2023-11-16 10:04	* 0	Act but
Software Products	~	>	SREM	LO	SREMPROBA1_PACC_20220328	2024-02-07 10:40	2023-03-28 10:40	2023-03-29 10:40	* 0	Ball
Working Area		>	SREM, EDA	LO	proba_row_1	2024-02-27 14:54	2024-02-22 14:52	2024-02-26 14:52	7 0	
		>	NGRM	L1B	ersa_ngrm_l1b_27-03-2024_101420	2024-03-28 18:56	2023-03-16 18:55	2023-03-17 18:56	¥0	
		>	ERFNET		ngrm_results	2024-03-28 23:14			* 0	
		> ERSA	NGRM	L1B	ersa_ngrm_l1b_28-03-2024_132520	2024-03-28 18:18	2024-03-10 01:00	2024-03-12 00:59	¥0	
		> ERSA	MEDIPIX	L1B	ersa_ngrm_l1b_29-03-2024_084500	2024-03-29 10:57	2024-03-10 01:00	2024-03-12 00:59	*0	
		> ERSA	MEDIPIX	L1B	ersa_ngrm_l1b_29-03-2024_103413	2024-03-29 11:34	2024-03-10 01:00	2024-03-12 00:59	* -	
		> ERSA	MEDIPIX	L1B	ersa_ngrm_l1b_29-03-2024_103413	2024-03-29 18:01	2024-03-10 01:00	2024-03-12 00:59	* 0	
		« < 1 2	3 4 5 > > 10 ·						1 of 6 (57 item	ns)
		Total results: 57 Total selected: 0								
		🛓 Download a	all results 🕹 Down	load selected X Clear sel	ected					

Data Exploration (2)

Current search query

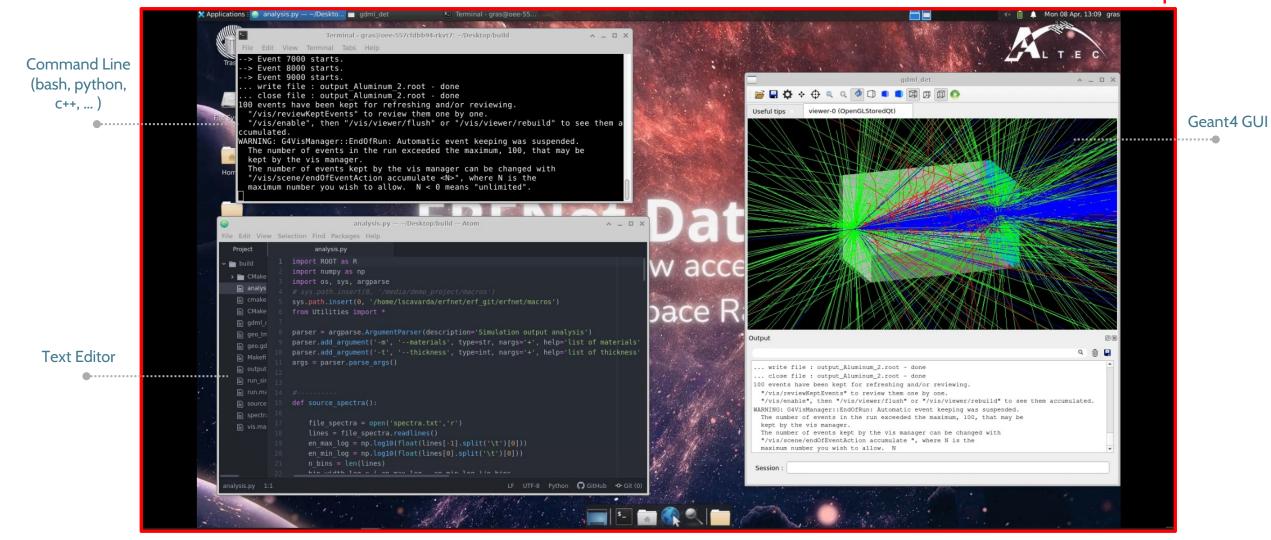
- Users are able to apply filters
- Users are able to inspect each dataset expanding the row

and results Search filters OR AND \otimes Instrument Equal \sim NGRM à \sim Current query: select * from products where Spase.NumericalData.InstrumentID = "NGRM" **\$** Processing Level 1 Ingestion Time \$ Start Coverage 1 End Coverage Actions 1 Instrument 1 Name Project NGRM L1B ersa_ngrm_l1b_27-03-2024_101420 盘□ > 2024-03-28 18:56 2023-03-16 18:55 2023-03-17 18:56 盘 □ ERSA NGRM L1B ersa_ngrm_l1b_28-03-2024_132520 2024-03-28 18:18 2024-03-10 01:00 2024-03-12 00:59 JSON Switch between "compact" and "metadata" view Table Files name: FPDO.csv, FPDO_Quality.csv, FEIO.csv, FEIO_Quality.csv Dataset information Formats: csv, csv, csv, csv Size: 0.62 MB (compact view) Description: L1B NGRM Bundle generated from ersa_ngrm_l1b processor » 10 v 1 of 1 (2 items) Total results: 2 Total selected: 0 (0 MB) 🛓 Download selected 🛓 Download all results X Clear selected


Data Upload

	ЕКВ	Welcome, Lorenzo Scavarda! Role: SCIENTIST Logout
Dashboard Dataset	Dataset Upload	
Data Exploration Data Upload Data Requests	Data Upload Type* Select a upload type Project Name*	 Direct upload or via SFTP
🍫 Data Processing 🗸 🗸	Select project	 Project (ERSA, IDA, other,)
>_ Batch Execution ~	Instrument* Select instrument	✓ Type of instrument (SREM, NGRM, other,)
 Software Products 	Discipline* 🖗 Select discipline	✓ Discipline (dosimetry, space radiations, other,)
📩 Working Area	Description* Set description	Brief description
	Type Experiment Location® © Ground Experiment or Space Mission	Data Level (LO, L1A, etc)
	Select location	 ✓ Select level ✓
	Measurement Type* Select measurement type Acquisistion Time (start)* Set start date	 Measurement type (abs dose, eq. dose, differential flux, etc) Acquisistion Time (end)* E Set end date
	Configurations Access Policy* 2 Select policy Submit	 Privacy level: Private: only you Public: everyone Team: a limited group of people

The user personal area where create projects (MC simulation or analysis task), access data, share data outputs, etc.



Working Area (2)

• Geant4 simulation example: study dose reduction for different shielding materials and thickness

Remote Desktop

Batch Execution

New Simulation General Only GRAS is Profile* enabled for beta Default Execution Profile version Run Command to run the simulation Simulation tool selection (GRAS, GEANT4, etc.) Tool CMD⁴ GRAS gras \${MainInput}/main.g4mac CPU* Memory¹ Configure processing 8GB parameters. Duration^a Working Dir* 120 Autofilled for beta Schedule Type version Working directory. For Beta testing period use: Immediate Time of job submission (now or scheduled) Inputs Input path. For Beta testing period use: /test : Input paths /test Additional input properties product.id of software products. For beta testing period run the example provided: 2d9baad7-2c6a-4220-9765-10bf61fb47df or upload your softwares from the Data Upload page MainInput 😰 2d9baad7-2c6a-4220-9765-10bf61fb47df Outputs Output name. For Beta testing period use: *output* (See slide 38) Visibility* Output paths* Privacy level: Private output • Private: only you Additional ouput properties • Public: everyone Another 2 Team: a limited Another group of people Submit