

Istituto Nazionale di Fisica Nucleare

MSD clustering and η-correction

R. Zarrella, G. Silvestre (and A. Oliva)

FOOT XVI General Meeting 24-26/06/2024

The MSD workflow

Step-by-step review of the MSD data processing!

- RawHit \rightarrow Hit
 - → VA gain correction added
 - ➤ Correct flagging of noisy/dead strips
- Hit \rightarrow Cluster
 - → Clustering algorithm re-checked and updated
 - → η-correction
- MChit \rightarrow Hit \rightarrow Cluster
 - → Updated to match new containers

RawHit → **Hit: VA gain correction**

Strip-wise ADC correction

- 640 strips \rightarrow 10 Voltage Amplifiers of 64 channels each
- Correct for gain difference
 - → Fit Landau distribution for strip ΔE in each VA
 - ➔ Normalize MPVs
- New calibration file in SHOE
 - shoe/Reconstruction/calib/*/TAMSD_VA_gain.cal

Same for all campaigns!!

R. Zarrella

Hit → Cluster: Clustering algorithm

Double threshold algorithm

- "Fire" threshold \rightarrow Strip is considered "on"
- "Seed" threshold \rightarrow Enough signal for cluster!

1) Start from seed strip

2) Add left/right strips until above fire threshold

$$S_{clus,raw} = \sum_{i} S_{i} \qquad \qquad x_{clus} = \frac{\sum_{i} S_{i} \cdot x_{i}}{S_{clus,raw}}$$

Hit → Cluster: Updated clustering algorithm

Double threshold algorithm

- "Fire" threshold \rightarrow Strip is considered "on"
- "Seed" threshold \rightarrow Enough signal for cluster!

1) Start from seed strip

2) Add left/right strips until above fire threshold **skipping noisy/dead strips**

Hit → Cluster: Updated clustering algorithm

Double threshold algorithm

- "Fire" threshold \rightarrow Strip is considered "on"
- "Seed" threshold \rightarrow Enough signal for cluster!

1) Start from seed strip

- 2) Add left/right strips until above fire threshold **skipping noisy/dead strips**
- 3) Add 1st two strips below fire threshold

Hit → Cluster: Updated clustering algorithm

Double threshold algorithm

- "Fire" threshold \rightarrow Strip is considered "on"
- "Seed" threshold \rightarrow Enough signal for cluster!

1) Start from seed strip

- 2) Add left/right strips until above fire threshold **skipping noisy/dead strips**
- 3) Add 1st two strips below fire threshold
- 4) Avoid noisy/dead strips for signal/position calculation

$$S_{clus,raw} = \sum_{i}^{good} S_i \qquad \qquad x_{clus} = \frac{\sum_{i}^{good} S_i \cdot x_i}{S_{clus,raw}}$$

η parameter: refresh

readout

capacitance

loating strip r

0.7

0.8

0.9

Floating strip configuration → charge collection depends on particle hit position!

$$\eta = \frac{S_L}{S_L + S_R}$$

 $S_{L/R}$ = two highest strips in cluster

η = relative signal fraction of 2 highest strips

- Center of gravity in readout pitch units
- Peaks due to capacitive coupling
- Non-linear signal division btw strips

R. Zarrella

FOOT XVI General Meeting

0.1

silicon bulk (150 μm)

0000 julie

5000

4000

3000

2000

1000

readout

capacitance

Floating strip regio

0.3

nterstrip region

interstrip

capacitance

backplane

nterstrip regior

st-to-third strip capacitance

Readout regior

nterstrip regior

η parameter: refresh

 $S_{L/R}$ = two highest strips in cluster

Data taking w/ focused laser

24-26/06/2024

R. Zarrella

η parameter: GSI2021 data

GSI2021 run 4303-4312

- ¹⁶O @ 400 MeV/u
- Both MB and frag triggers
- Both C and PE targets

- $\sqrt{S_{raw}}~(\propto Z)$ as a function of η
- Different Z populations noticeable
- No event selection
 → some background everywhere
- Many low signal clusters

24-26/06/2024

R. Zarrella

η correction: calibration strategy

24-26/06/2024

R. Zarrella

η correction: charge division

- Charge identification + tracking coherent!!!!
- Fragmentation in air/MSD visible

24-26/06/2024

R. Zarrella

FOOT XVI General Meeting

Fit signal as function of η

Low statistics for p w/ this selection \rightarrow Use other sample

η correction: signal-η fit

24-26/06/2024

R. Zarrella

η correction: calibration

Fit works fine for all Z>1, but what about protons?

24-26/06/2024

R. Zarrella

η correction: protons calibration

Look at only one sensor!

- Sensor response compatible btw each other •
- Less low-signal background ٠

 10^{4}

η correction: calibration map

Putting everything together $\rightarrow \eta$ -correction map!!

η correction: application to data!

Apply η -correction \rightarrow Sensor response correctly flattened!!

η correction: application to data!

η correction: energy loss in one sensor

• Energy loss \rightarrow double peak due to η removed

• Still some artifact from saturation (N-O)

η correction: multi-sensor energy loss

- Average energy loss between all sensors
- Too many peaks!!
- Mostly artifacts of noisy clusters/sensors

η correction: multi-sensor energy loss

- Average energy loss between all sensors
- Too many peaks!!
- Mostly artifacts of noisy clusters/sensors
- Switch to median???

Mean vs Median

· Choosing mean or median as the best expectation value of a distribution depends on the outliers

• Median, as the central value of a ordered set, is more robust in presence of outliers

R. Zarrella

FOOT XVI General Meeting

Courtesy of G. Ubaldi

η correction: multi-sensor energy loss

- Much better!!!
- Get rid of artifacts
- Very good energy resolution!

η correction: multi-sensor energy loss

- Very good MSD-TW correlation!
- Possible to recognize many physics and reconstruction effects
 - Good correlation
 - → Out-of-target fragmentation
 - * 2- α pile-up
 - Noise artifacts
 - → Event pile-up (?)

Bonus: η correction in CNAO2023

Apply η -correction \rightarrow Same map works also for CNAO2023 (all sensors to be checked!)

Summary of software updates

- Macro for η-correction map (shoe/Reconstruction/macros/ComputeMsdEtaCorrection.C)
- TAMSDrawHit
 - → GetCharge() → strip raw ADC readout
 - → Fixed IsSeed and IsFired flags
 - → Noisy/dead strip flagged correctly (from pedestal calibration files)
- TAMSDhit
 - → GetEnergyLoss() → strip ADC with VA gain correction
- TAMSDcluster
 - → Clustering algorithm updated!
 - → η -correction now properly implemented k(η , S_{raw})
 - Map will be used imported in all campaigns
 - → GetEnergyLossNoEta() → Non-calibrated energy loss
 - → GetEnergyLoss() → η -calibrated energy loss [MeV]
- TAMSDcalibrationMap
 - → Loaded and applied 2D η -correction map (+ 2D interpolation of correction factors)

TAMChit

 \rightarrow Updated to match changes in data containers

Conclusions

MSD updates!

- Checked whole reconstruction chain from raw to cluster
- Updated clustering
- η -correction -> calibrated ΔE in MSD
- Very good correlation w/ TW and glb tracks
- Very good energy resolution in MSD!

- Need to re-check all MSD pedestals and clustering thresholds!! (IMPORTANT)
- No check performed on MSD tracking or MSDpoints!
- Need for someone else to do this, so... volunteers are welcome!

Many many thanks to Gianluigi and Alberto!! (and to all my office mates for the patience... 😅)

Backup slides