

Update on the 3D model of FOOT dipoles for magnetic field mapping extraction

XVI FOOT Collaboration Meeting 25/06/2024

Antonio Trigilio, Lucia Sabbatini, Andrea Selce, Alessandro Vannozzi

antonio.trigilio@Inf.infn.it, lucia.sabbatini@Inf.infn.it

Outline

- Present a recap of the available measurements of the magnetic field spatial distribution over the dipole system.
- Introduce the 3D model developed from the mechanical design of SigmaPhi and validated using OPERA FEM analysis for the solution of the field equations.
- Show the comparison between the model and the set of measurements, highlighting possible sources of discrepancies.
- Next steps and conclusions.

Measurements @ SigmaPhi

Measurements @ SigmaPhi

• No radial (along *x*) scans, but we can evaluate the alignment plotting the positions of the peaks measured during longitudinal scans at different *x*.

• M2

*B*_y max: 0.9009 T @ *z*: −5 mm (parabolic fit: 0.8998 T @ −4.76 mm)

 Step quite large, not ideal to compare with the 3D model. Fitting not very accurate.

Measurements @ LNF

- Our measurements were performed with a 1D Hall probe on a 5 axis movement system on a granite bench.
- In order to have more flexibility, our measurements start on the magnet with the larger bore, i.e. M2, hence we have a different sign in the *x* and *z* axis w.r.t. SigmaPhi data.
- We are also centered on the point between the two dipoles, while SigmaPhi is at the center of M2.
- During alignment, a displacement of 1 mm has been detected between the mechanical axes of the two magnets.
- After inverting the *z* axis and reconstructing the origin of the reference frame, we compare the two data sets and find a good agreement, compatible with probes precision.

Measurements @ LNF

- After that, we performed further measurements (longitudinal all with step $\Delta z = 2$ mm).
 - 2 radial scans around M1 and M2 peaks with $\Delta x = 1 \text{ mm}$
 - 5 longitudinal scans with *z* range = (-465; +499) mm, *x* = 0, ±4 mm, ±8 mm
 - 2 longitudinal scans on reduced *z* range = (-465; +299) mm, *x* = ±10 mm
 - 2 longitudinal scans on **reduced** *z* **range** = (-465; +17) mm, *x* = ±19 mm
- All these measurements were used for comparison with SigmaPhi measurements (see presentation by L. Sabbatini @ previous meeting, 11/12/23, for details).

- A 3D model was built in order to run a simulation with OPERA, making a map of the magnetic field in the 3-dimensional space. Because the model was compared with the LNF data (more comprehensive than SigmaPhi), the *z* axis is again inverted (M2 comes before than M1).
- For following graphs, z=0 mm means the position between M1 and M2.
- (A new model with the right reference frame has already been developed for implementation in the original geometry).

3D model

- The «as built» file provided by SigmaPhi is not updated to the latest version: the distance between the two magnets has not been modified according to the actual one (request for a distance between flanges increased to 55±1mm).
- Unfortunately, there are no measurements post-displacement, so we do not know for sure the distance between M1 and M2. The file has been adapted by modifying the position of the 2 magnets and varying the distance to identify the one that best reproduces data.
- Permanent magnets BH curves: N48H-Arnold-60, N38UH-Arnold-60.

Distance between M1 and M2 centers: 165, 166, 167, 168 mm

- First results show the comparison for longitudinal scans at x (and y) equal 0.
- **Disclaimer.** We have lots of sources of micro-uncertainties (radial misplacement, alignment of magnets, pitch angle, roll angle) which, at large distances, may contribute to large relative errors.
- We focus on the validation of the field in the area at the centers of the magnets and in the space between them.

3D model: Varying M1-M2 distance (x=0)

Analysis of the features of key points: the two maximum and the center of the system

3D model: Varying M1-M2 distance (x=0)

3D model: Varying M1-M2 distance (x=0)

- From a first analysis, the model at 166 mm and 167 mm distance give the best results at the center of the two magnets (<1% or relative error).
- The 167 mm model shows also lower relative error at larger distances, so we keep this model for comparison with longitudinal scans at different *x* positions.

3D model: 167 mm distance

Comparison of «167» with long. scans at different x

Comparison of «167» with long. scans at different x

Comparison of «167» with long. scans at different x

Comparison of «167» with radial measurements

Possible sources of errors and geometry effects

- Tests have been performed introducing an initial angle between the axes of the magnets. Up to 5 mrad: neglectable.
- Comparison with radial measurements show no significant influence from an initial tilt in the alignment of the magnets.

Conclusions

- Comparison between 3D model and measurements at LNF gave encouraging results. The relative error in the region where the magnetic field is more intense is below 2%, with no significant variation between data sets taken at different transverse positions.
- The new geometry is ready. We will perform some routine validation and then produce a file with the complete mapping of the magnetic field.

		x=-19mm	x=-10mm	x=0mm	x=10mm	x=19mm	JEN	
M1	B _{max} SigmaPhi (G)	14269	14004	13920	14026	14256	LNF	
	B _{max} LNF (G)		13954	13867	13974			
	∆ (%)		0,36	0,38	0,37			
	Homogeneity SP (%)	2,51	0,60		0,76	2,41		
	Homogeneity LNF (%)		0,63		0,77			
M2	B _{max} SigmaPhi (G)	9119	9039	9009	9041	9112		
	B _{max} LNF (G)	9089	9011	8981	9012	9090		
	∆ (%)	0,33	0,31	0,31	0,32	0,24		
	Homogeneity SP (%)	1,22	0,33		0,36	1,14		
	Homogeneity LNF (%)	1,21	0,34		0,35	1,22		
min	By SigmaPhi (G)	6106	6223	6265	6216	6102		
	By LNF (G)	6112	6223	6262	6214	6096		
	∆ (%)	-0,10	0,01	0,05	0,03	0,11		
Int.	SigmaPhi (T mm)	324,83	322,94	322,37	323,20	324,69		
	SigmaPhi (T mm)	152,23	319,39	321,99	319,67	152,21		
	LNF (T mm)	151,16	318,33	320,95	318,52	151,09		
	∆ (%)	0,70	0,33	0,32	0,36	0,74	18	