

Collaboration

Collaboration by numbers:

- 93 Authors,
- 33 Institutions
- 5 countries (Italy, France, Germany, Japan, Cuba)
- 3 continents (Europe, Asia, America)
- 54% of women (highest in CSN3)

Still extending:

- A group from LNGS (emulsions)
- Calicut University, India (?) (data analysis)

The FOOT Physics Program

FOOT

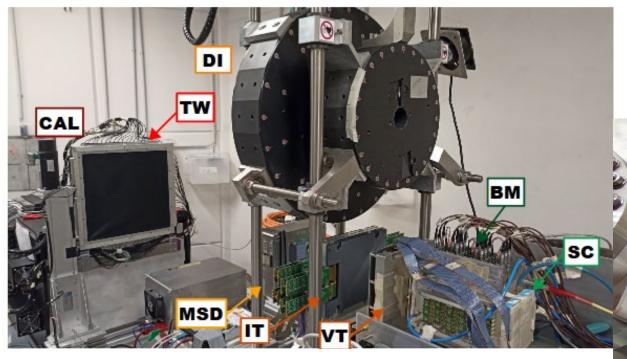
Specific measurements related with Particle Therapy & Radioprotection in Space

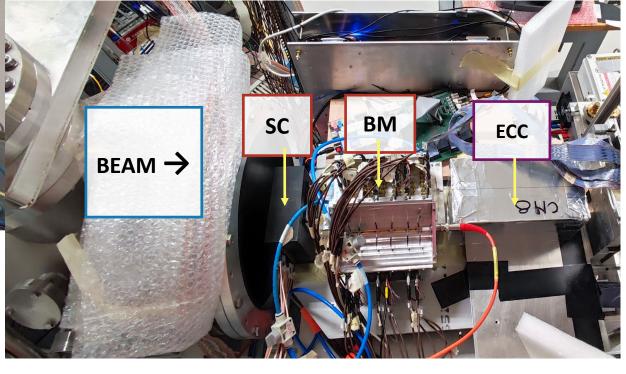
- Using C, C_2H_4 \rightarrow cross sections on C and H
- Using C, C_2H_4 , PMMA \rightarrow cross sections on C, O and H

PMMA is a combination of C,O,H.

Phys	Beam	Target	Energy (MeV/u)	Inv/direct	
Target Frag. PT	rag. 12C C,		200	inv	
Target Frag. PT	¹⁶ O	C, C ₂ H ₄	200	inv	
Beam Frag. PT	¹² C	C, C ₂ H ₄ , PMMA	350	dir	
Beam Frag. PT	¹⁶ O	C, C ₂ H ₄ , PMMA	400	dir	
Beam Frag. PT	⁴ He	C, C ₂ H ₄ , PMMA	250	dir	
Rad. Prot.space	⁴ He	C, C ₂ H ₄ , PMMA	700	dir	
Rad. Prot.space	¹² C	C, C ₂ H ₄ , PMMA	700	dir	
Rad. Prot.space	¹⁶ O	C, C ₂ H ₄ , PMMA	700	dir	

open to other possible physics programs


E.g. C + C
$$\rightarrow$$
 3 α + X


Physics data taking done up to now

Beam	Target	Energy MeV/u	Statistics (millions)	Integral Differential elemental	Integral Differential isotopic	direct	inverse	Emulsions	campaign
0	C C2H4	200 400	0.06	angle	NO	YES	NO	Yes Yes	GSI 2019 GSI 2020
O	C C2H4 C C2H4	200 200 400 400	14.2 12.2 5.5 6.5	angle	NO	YES	NO	Yes	GSI 2021
He	С	100 140 200 220	18.5 19.6 13.5 14.4	angle	NO	YES	NO	No	HEID 2022
С	С	200	4.1	angle	NO	YES	NO		CNAO 2022
С	C C2H4	200 200	3.2 2.0	Angle Energy	YES	YES	YES	Yes	CNAO 2023

Detectors from CNAO 2023

Tools

F O O T

Monte Carlo:

• Continuously evolving and following the different set-ups used in data takings or contributing to the definition of the set-ups!

Trigger and Data Acquisition:

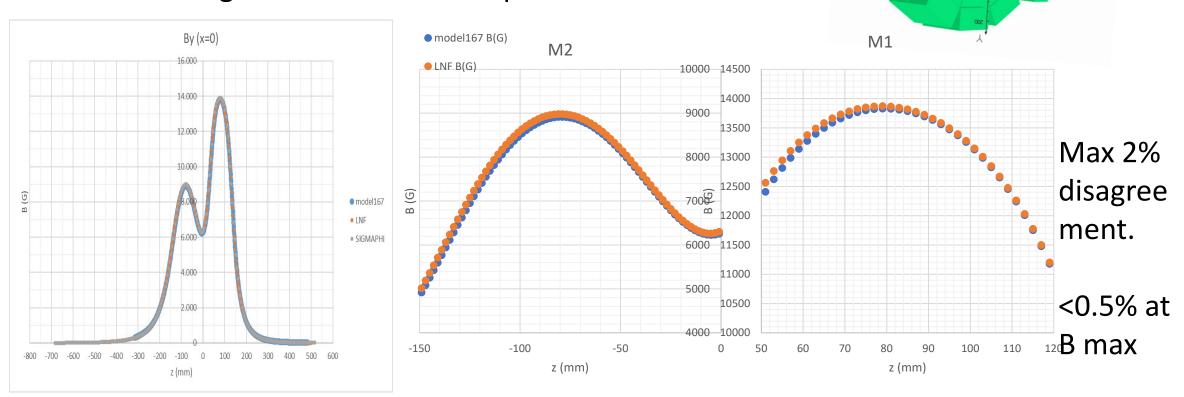
- Evolving with time and detectors on the beam line
- More online controls; not yet finished!

Reconstruction software:

- Shoe: continuous development. Not at all an easy task!
- Tuning at each data taking (alignment, noise, detectors on the beam line....).
- Emulsions: properly running. NIT reco ongoing

Tools are being used to get some physics!

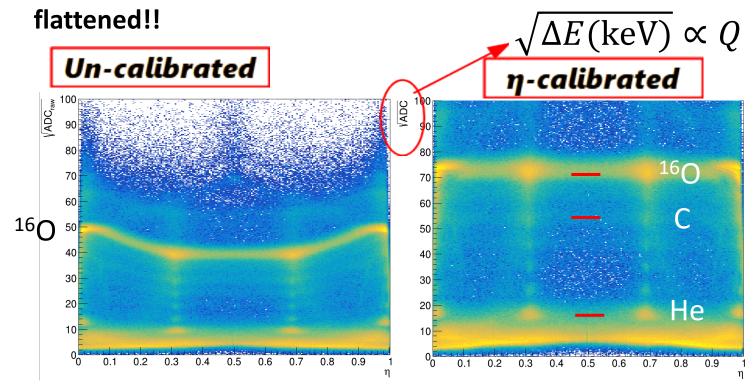
Many calibration studies and analyses ongoing

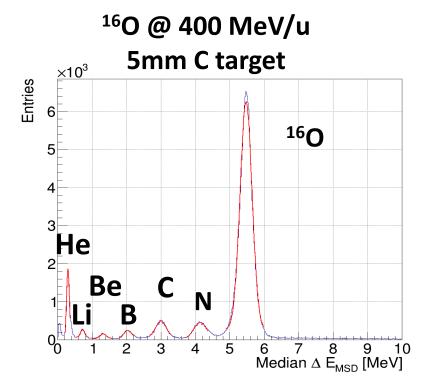


- Really too many to mention!
- We'll get the details in this meeting


Down here just a random selection

LNF measurements. 3D mechanical and magnetic model


- Needed several iteration to get the real «as built»
- Several tests for different «real positions» of M1 & M2
- Permanent magnets BH curves from producer.



MSD: η correction applied to energy measurement!

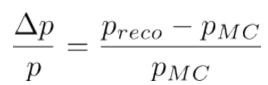
Apply η -correction \rightarrow Sensor response correctly

Median ΔE on a track

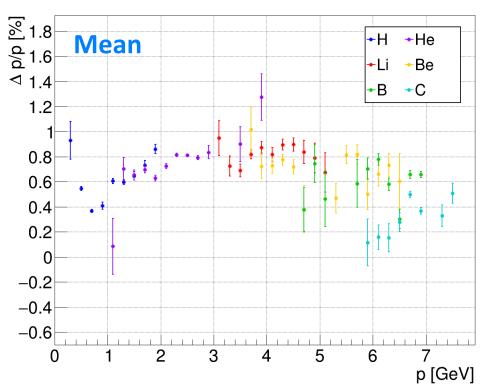
In-flight interations can be well identified if they happens after MSD

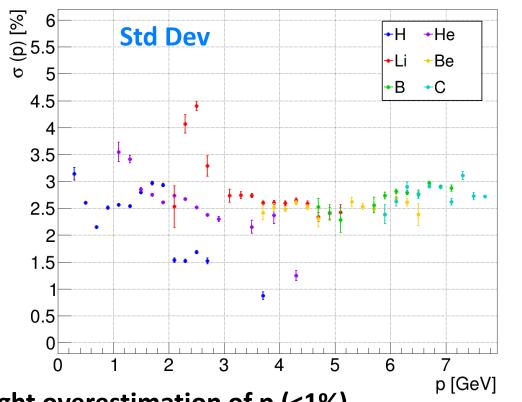
24/06/2024

Calorimeter Resolution



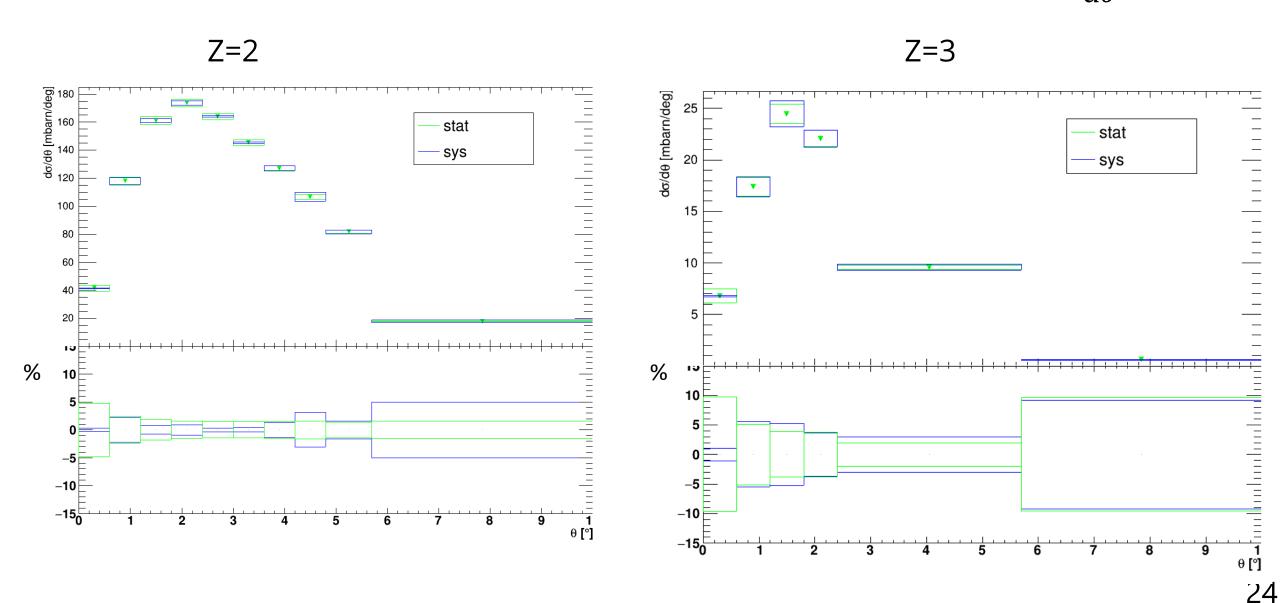
After equalization the integrated energy resolution is ~1%


Monte Carlo tuning on data with magnet

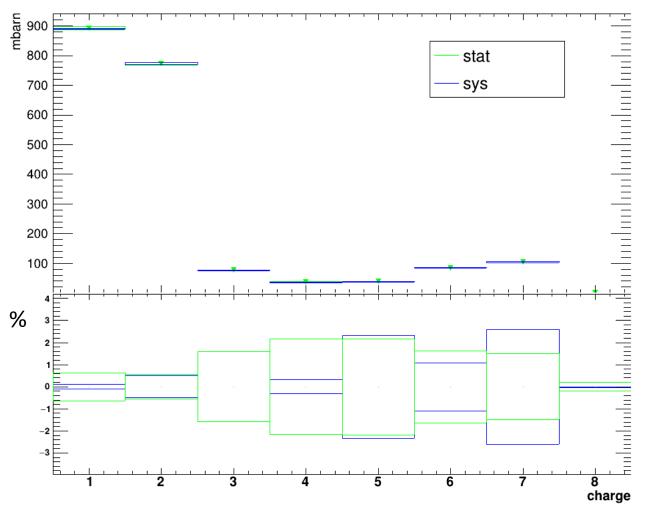

A lot of effort to include all detectors in tracking.

A Runge-Kutta-Nystrom Kalman filtering fully implemented.

Momentum resolution @ vertex

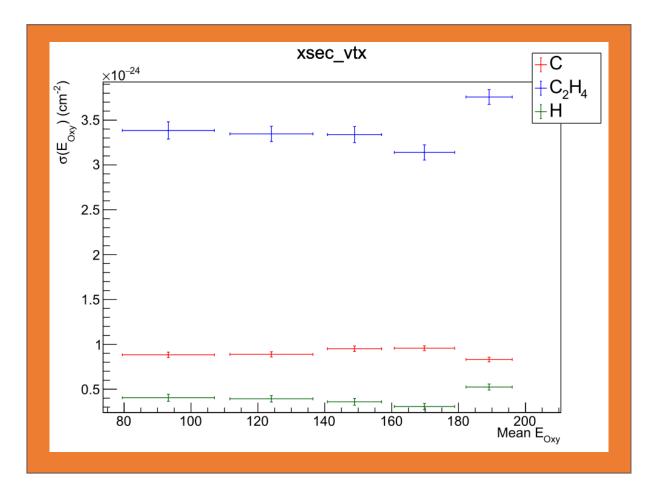


Slight overestimation of p (<1%)


p resolution ~ 2.5% in the whole energy range (TDR goal: <4%)

Results on GSI 2021 O+C, 400 MeV/N $\sigma_{frag}(Z) \frac{d\sigma_{frag}(Z)}{d\theta}$

Integral cross section GSI 2021 – O+C 400 MeV


Paper in the writing stage Uncertainties on cross sections (much) lower than 5%

Analysis extension to the O+CH₂ And extraction of O+H cross section Under way

Emulsions: data analysis and cross section measurement

- Analysis of ¹⁶O @ 200 MeV/n on C and C₂H₄ targets almost completed:
 - Improvements in data-driven effects added on Monte Carlo reconstruction (background, misalignments, local distortion due to chemical development...)
 - Evaluation of total and reaction cross sections

• Paper on cross section measurements with ¹⁶O at 200 MeV/n on C, C₂H₄ and H **in preparation**

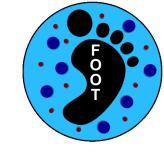
Tools

F O O T

Monte Carlo:

 Continuously evolving and following the different set-ups used in data takings or contributing to the definition of the set-ups!

Trigger and Data Acquisition:


- Evolving with time and detectors on the beam line
- More online controls; not yet finished!

Reconstruction software:

- Shoe: continuous development. Not at all an easy task!
- Tuning at each data taking (alignment, noise, detectors on the beam line....).
- Emulsions: properly running

- We have an abundance problem: too many data sets
- Still working on data from 2021 and earlier, while we have two samples in 2022 and one «engineering run» (good for physics) in 2023.
- I would welcome if more people decide to be involved in the analyses, but I also know duties and opportunities in other fields (i.e. calibration, prins, ...)
- The 2024 CNAO data taking will likely be detuned to be detector understanding only (or mostly). A physics data taking will come soon after.

CSN3 is asking us a three year plan ...

Beam	Target	Energy MeV/u	Integral Differential elemental	Integral Differential isotopic	direct	inverse	Emulsions	Campaign
0	С	500	Angle Energy	YES	YES	YES	YES	GSI 2025
С	C C2H4	100- 200	Angle Energy	YES	YES	YES	YES (NIT?)	CNAO 2025
С	C C2H4	200- 440	Angle Energy	YES	YES	YES	NIT	CNAO 2026
С	C C2H4	700	Angle Energy	YES	YES	YES	YES	GSI 2027

Foreseeable requests:

2025: 240 k€ - at GSI with part of MAECI funds

2026: 230 k€ - no external funding

2027: 270 k€ - no external funding

- Decided to measure cross sections in the «high» energy range:
 16O on C, CH₂ at 500 MeV/N, 32 h of beam
- Use of the Cave A currently studing the optimal detector geometry
- MC generation will follow soon
- Foreseen data taking period: feb-jun 2025 (!) It might be early for new detectors (TW, New vertex)
- People: 3 Post doc bourses (12-18 months) opened in To, Na, Bo (and still looking for a hardware-oriented person in LNF)

FOOT impact on the community

Activities ongoing on several fronts:

- Many are involved in PRIN 2022 (9!) activities and
- in the MAECI Project
- Detector calibration & undestanding
- Analyses
- Present at the Nuclear Physics Mid Term Plan &
 Sesto Incontro Nazionale di Fisica Nucleare (Trento)
- Paper and conference proceedings
- Proposal writing
 - No proposal in writing or in the waiting stage at the moment.
 - Good: we're fully booked till 2026!!

All these activities are are signs of a healthy and active collaboration!

Time to start the meeting!

Please stay in the allocated time

Please upload your presentation as soon as possible

Have a fruitfull meeting!