Nuclei-hadron angular correlations (η, φ) in pp collisions

ALICE-ePIC Meeting - 21/02/2024

Francesca Ercolessi within the CosmicAntiNuclei Project

Physics motivation

Two phenomenological models for light nuclei formation:

Thermal statistical models \rightarrow hadrons are produced by a thermally equilibrated source and their abundances are fixed at the chemical freeze-out

Coalescence approach \rightarrow nucleons close in space, with similar velocities, and matching spin states can form a bound state

Small collision systems (as pp) particularly interesting

Analysis strategy

Angular correlation $(\Delta \eta, \Delta \varphi)$ distributions of the trigger (deuteron) and associated particle (proton) pairs \rightarrow compare proton yields close with the deuteron in phase-space and uncorrelated to probe coalescence

$$\begin{cases} \Delta \eta = \eta^d_{trig} - \eta^p_{assoc} \\ \Delta \varphi = \varphi^d_{trig} - \varphi^p_{assoc} \end{cases}$$

 φ : azimuthal angle η = - ln (tan(θ /2)) θ : polar angle

Baryon correlations

Near-side depression of the angular correlation functions for like-sign baryon pairs, not reproduced in PYTHIA/EPOS Coalescence mechanism was considered No results yet for d-p correlation!

d-p correlations in the models

Azimuthal correlation functions of the *initial* protons and neutrons \rightarrow emitted from the collision system at freeze-out

In this paper: AMPT model with a coalescence afterburner (hybrid model combining several sub-models)

d-p correlations in the models

Azimuthal correlation functions of the *initial* protons and neutrons \rightarrow emitted from the collision system at freeze-out

Part of the initial protons and neutrons coalesces into deuterons and the *remaining* nucleons construct the azimuthal correlation functions

In this paper: AMPT model with a coalescence afterburner (hybrid model combining several sub-models)

d-p correlations in the models

Azimuthal correlation functions of the *initial* protons and neutrons \rightarrow emitted from the collision system at freeze-out

Part of the initial protons and neutrons coalesces into deuterons and the *remaining* nucleons construct the azimuthal correlation functions

In this paper: AMPT model with a coalescence afterburner (hybrid model combining several sub-models)

Analysis strategy

- 1. Event selection
- 2. Identification of deuterons (trigger particle)
- 3. Identification of associated protons
- 4. Calculation of the raw $(\Delta\eta,\Delta\varphi)$ angular correlation distribution between the trigger deuterons and associated protons
- 5. Correct the angular correlation distribution with:
 - a. pair acceptance (Mixed Event) \rightarrow to reject non physical correlations (**Data**)
 - b. reconstruction efficiencies for deuterons and protons (p_T , η) (MC)
 - c. corrections for secondaries (MC)

$$\frac{\mathrm{d}^2 N_{\mathrm{pair}}}{\mathrm{d}\Delta\varphi \mathrm{d}\Delta\eta} (\Delta\varphi, \Delta\eta) = \frac{1}{N_{\mathrm{trigg}}} \sum_{\eta_{\mathrm{trigg}}} \sum_{\eta_{\mathrm{assoc}}} \frac{1}{\varepsilon_{\mathrm{trigg}}} \frac{1}{\varepsilon_{\mathrm{assoc}}} \sum_{\nu_z} \frac{\mathrm{d}^2 N_{\mathrm{pair}}^{\mathrm{raw}}}{\mathrm{d}\Delta\varphi \mathrm{d}\Delta\eta} (\Delta\varphi, \Delta\eta) \frac{1}{\varepsilon_{\mathrm{pair}}}$$

Event selection

- **Data**: LHC22cde apass4 \rightarrow 80M events (Target \rightarrow 13.6 TeV full apass4)
- MC: LHC22h1d1 \rightarrow GP anchored to LHC22cde
- Event selection: sel8 + |zvtx|<10 cm

Data model: *singleTrackSelector* from femto team!

Track selection

For now TPC PID \rightarrow pT < 1.2 GeV/c

p⊤ bins:

 $\{0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2\}$

Selection	Cut
hasITS	true
min N ITS clusters	1
hasTPC	true
TPC N cls found	80
TPC N crossed rows	70
ITS Chi2	36
TPC Chi2	4
ρ τ	> 0.2, < 1.0 GeV/c
DCA xy	0.14 cm
DCAz	0.1 cm
1	

(Anti)proton identification (TPC)

TPC 3σ (Pr) + pT < 1.2 GeV/c

Mixed event implementation: pp

- 1. Loop over tracks
- 2. Check PID of deu/pr
- 3. Map selected tracks to collision IDs
- 4. Loop over collisions
- Define mixing bins in mult.+vertex bins (10x10)
- 6. mixing

First attempted using pr-antipr with <u>AN 13 TeV</u> as reference

Not obtaining the correct distribution, i.e. \rightarrow Under investigation

Efficiency calculation vs pτ, η

Tracking efficiency vs p_T , η (ϕ to do)

Efficiency calculation vs p_T , η

Tracking efficiency (anti-)protons vs p_T (on a subset of MC statistics!)

New analysis on p-d angular correlation in pT/A bins \rightarrow data and simulation already being tackled !

Target datasets Run 3 data at 900 GeV and 13.6 TeV

Machinery being developed... more news soon!

Any idea/suggestion?