Visions and Whispers of WISPs

Andreas Ringwald 2nd General Meeting of COST Action Cosmic Whispers Istanbul, Turkey 2-6 September 2024

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Well-motivated WISP Candidates

Spin 0: Ultralight pseudo Nambu-Goldstone bosons

Pseudo Nambu-Goldstone bosons arising from the breaking of symmetries beyond the SM at a scale much larger than the electroweak scale, such as

- Scale invariance: Dilaton [Kaluza `1921;Klein `1926;...]
- Peccei-Quinn symmetry: Axion [Peccei,Quinn `77; Weinberg `78; Wilczek `78]
- Lepton symmetry: Majoron [Chikashige,Mohapatra,Peccei `81, Gelmini,Roncadelli `81]
- Family symmetry: Familon [Wilczek `82; Berezhiani,Khlopov `90]
- Gauge symmetries in ten dimensions: Type II closed string axion-like particles (ALPs)

[Arvanitaki et al. `10; Cicoli,Goodsell,AR `12; ...]

Talks by Alexander Westphal, Jacob Leedom, Andreas Schachner

Well-motivated WISP Candidates

Spin 0: Ultralight pseudo Nambu-Goldstone bosons

Pseudo Nambu-Goldstone bosons arising from the breaking of symmetries beyond the SM at a scale much larger than the electroweak scale, such as

- Scale invariance: Dilaton [Kaluza `1921;Klein `1926;...]
- Peccei-Quinn symmetry: Axion [Peccei,Quinn `77; Weinberg `78; Wilczek `78]
- Lepton symmetry: Majoron [Chikashige,Mohapatra,Peccei `81, Gelmini,Roncadelli `81]
- Family symmetry: Familon [Wilczek `82; Berezhiani,Khlopov `90]
- Gauge symmetries in ten dimensions: Type II closed string axion-like particles (ALPs)

[Arvanitaki et al. `10; Cicoli,Goodsell,AR `12; ...]

Talks by Alexander Westphal, Jacob Leedom, Andreas Schachner

are natural WISPs and even DM candidates:

- 1. Massless as long as symmetry exact; small mass from tiny (non-perturbative) explicit symmetry breaking
- 2. Interactions with SM suppressed by large symmetry breaking scale
- 3. Produced automatically in the early universe by vacuum misalignment

[Preskill,Wise,Wilczek `83; Abbott,Sikivie `83; Dine,Fischler `83]

Talk by Cem Eroncel

Well-motivated WISP Candidates

Spin 1: Ultralight U(1) gauge bosons

"Hidden" or "dark" photons from a local U(1) gauge theory under which SM particles are uncharged, for example from U(1)s occurring

- from the breaking of a grand unified gauge group
- in low energy effective field theories from string theory:
 - hidden U(1)s of the heterotic string
 - compactifications of type II string theory (brane world scenarios):
 - RR U(1)s: KK zero modes arising in 4D decomposition of 10D form fields
 - Brane localized U(1)s: massless excitations of space-time filling D-branes wrapping cycles in extra dimensions

Hidden hyperweak brane Hidden collapsed brane Hidden \overline{D}_3 Small cycle for volume stabilization [Jäckel,AR `10]

[Abel et al. 08;Goodsell et al. 09;Cicoli et al. 11] [Hebecker, Jaeckel, Kuespert, 2311.10817]

[Goodsell,AR 10]

3. Produced automatically by

- vacuum misalignment (requires non-minimal coupling to gravity)
- by quantum fluctuations during inflation $m_{\gamma'} \sim 10^{-5}\,{
 m eV}\left(10^{14}\,{
 m GeV}/H_{
 m inf}
 ight)^4$ ٠

Well-motivated WISP Candidates

Spin 1: Ultralight U(1) gauge bosons

"Hidden" or "dark" photons from a local U(1) gauge theory under which SM particles are uncharged, for example from U(1)s occurring

- from the breaking of a grand unified gauge group
- in low energy effective field theories from string theory: ٠
 - hidden U(1)s of the heterotic string •
 - compactifications of type II string theory (brane world scenarios):
 - RR U(1)s: KK zero modes arising in 4D decomposition of 10D form fields •
 - Brane localized U(1)s: massless excitations of space-time filling D-branes wrapping cycles in extra dimensions ٠

are natural WISPs and even DM candidates:

- Gauge symmetry forbids explicit mass terms; small mass generated via hidden Higgs or Stückelberg
- Interactions with SM suppressed for small kinetic mixing $\mathcal{L} \supset -\frac{\chi}{2} F'_{\mu\nu} F^{\mu\nu}$; $\chi \sim \frac{e g_h}{16\pi^2}$

[Nelson, Scholtz `11; Arias et al., `12]

[Goodsell,AR 10]

[Graham, Mardon, Rajendran `16]

[Holdom `86]

Coverage of Parameter Range in the Past

DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

Coverage of Parameter Range in the Past

DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

Coverage of Parameter Range at Present

In 2024: \mathcal{L} :

$$\supset \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Coverage of Parameter Range at Present

In 2024:

 $\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{\Lambda} a F_{\mu\nu} \tilde{F}^{\mu
u}$

$$\supset \frac{g_{a\gamma\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 $\mathcal{L} \supset -\frac{\chi}{2} F'_{\mu
u} F^{\mu
u}$

Adapted from https://cajohare.github.io/AxionLimits/

In 2036:

 $\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

 $\mathcal{L} \supset -\frac{\chi}{2} F'_{\mu
u} F^{\mu
u}$

Adapted from https://cajohare.github.io/AxionLimits/

adapted by O'Hare from [Caputo et al. 2021]

In 2036:

 Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection

Caveats:

 Local axion DM density could be much less than average 0.4 GeV/cm³

Talks by Edward Hardy, Yannis Semertzidis, Luca Visinelli

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - Sensitivity holes around
 - peV to neV mass $(M_P > f_a > M_{GUT})$

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - Sensitivity holes around
 - peV to neV mass ($M_P > f_a > M_{GUT}$)
 - Search for oscillating NEDMs!

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - Sensitivity holes around
 - peV to neV mass ($M_P > f_a > M_{GUT}$)
 - Search for oscillating NEDMs!
 - meV mass

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - Sensitivity holes around
 - peV to neV mass ($M_P > f_a > M_{GUT}$)
 - Search for oscillating NEDMs!
 - meV mass
 - Search for axion-induced mono-pole-dipole forces!

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - Sensitivity holes around
 - peV to neV mass ($M_P > f_a > M_{GUT}$)
 - Search for oscillating NEDMs!
 - meV mass
 - Search for axion-induced monopolele-dipole forces!
 - eV mass
 - Fiberinterferometer search!

Fiber interferometer experiment can dig in vanilla axion band

WISPFI

•

[Batllori et al., 2305.12969]

- Mach-Zehnder-type interferometer with a hollow-core
 photonic crystal fiber (refractive index <1) placed inside an
 external magnetic field searches
 for photon disappearance
- Changing the gas pressure in the fiber allows to achieve resonant mixing for a mass range between 28 and 100 meV

Adapted from [https://raw.githubusercontent.com/cajohare/AxionLimits/master/plots/plots_png/AxionPhoton_UltraSimple_FullParameterSpace.png]

Monopole-philic KSVZ axion

 Low-mass haloscopes exploiting DC magnetic field, e.g. DMRadio, are insensitive to dominant effects (zeroth order in velocity) of the new, but dominant coupling gam in the generalized axion-Maxwell equations [Anton Sokolov, AR, 2104.02574; 2109.08503; 2205.02605; 2303.10170]

$$\begin{pmatrix} \partial^2 + m_a^2 \end{pmatrix} a = -(g_{a\gamma} - g_{am}) \mathbf{E}_0 \cdot \mathbf{B}_0 , \\ \nabla \times \mathbf{B}_a - \dot{\mathbf{E}}_a = g_{a\gamma} \left(\mathbf{E}_0 \times \nabla a - \dot{a} \mathbf{B}_0 \right) , \\ \nabla \times \mathbf{E}_a + \dot{\mathbf{B}}_a = -g_{am} \left(\mathbf{B}_0 \times \nabla a + \dot{a} \mathbf{E}_0 \right) , \\ \nabla \cdot \mathbf{B}_a = -g_{am} \mathbf{E}_0 \cdot \nabla a , \\ \nabla \cdot \mathbf{E}_a = g_{a\gamma} \mathbf{B}_0 \cdot \nabla a$$

Talk by Anton Sokolov

Monopole-philic KSVZ axion

- Low-mass haloscopes exploiting DC magnetic field, e.g. DMRadio, are insensitive to dominant effects (zeroth order in velocity) of the new, but dominant coupling gam in the generalized axion-Maxwell equations
- New experiments proposed to probe MP KSVZ axion dark matter
 - Measure axion-DM induced effective polarization and magnetization

[Tobar et al., 2306.13320]

[Anton Sokolov, AR, 2104.02574; 2109.08503; 2205.02605; 2303.10170]

$$\begin{pmatrix} \partial^2 + m_a^2 \end{pmatrix} a = -(g_{a\gamma} - g_{am}) \mathbf{E}_0 \cdot \mathbf{B}_0 , \\ \nabla \times \mathbf{B}_a - \dot{\mathbf{E}}_a = g_{a\gamma} \left(\mathbf{E}_0 \times \nabla a - \dot{a} \mathbf{B}_0 \right) , \\ \nabla \times \mathbf{E}_a + \dot{\mathbf{B}}_a = -g_{am} \left(\mathbf{B}_0 \times \nabla a + \dot{a} \mathbf{E}_0 \right) , \\ \nabla \cdot \mathbf{B}_a = -g_{am} \mathbf{E}_0 \cdot \nabla a , \\ \nabla \cdot \mathbf{E}_a = g_{a\gamma} \mathbf{B}_0 \cdot \nabla a$$

Talk by Anton Sokolov

Monopole-philic KSVZ axion

- Low-mass haloscopes exploiting DC magnetic field, e.g. DMRadio, are insensitive to dominant effects (zeroth order in velocity) of the new, but dominant coupling gam in the generalized axion-Maxwell equations
- New experiments proposed to probe MP KSVZ axion dark matter
 - Measure axion-DM induced effective polarization and magnetization

[Tobar et al., 2306.13320]

• Probes neV mass axion, that is $f_a \sim M_Q$ of order GUT scale

[Anton Sokolov, AR, 2104.02574; 2109.08503; 2205.02605; 2303.10170]

Distinguishing between axion and ALP

Current bounds on the coupling to the gluon resp. the NEDM

Distinguishing between axion and ALP

Prospected sensitivity on the coupling to the gluon resp. the NEDM

Searches for High-Frequency Gravitational Waves

Axion haloscopes, LSW experiments, and helioscopes as HF-GW detectors

Searches for High-Frequency Gravitational Waves

Axion haloscopes, LSW experiments, and helioscopes as HF-GW detectors

[Ejlli et al., 1908.00232]
[AR et al., 2011.04731]
[Berlin et al., 2112.11465]
[Domcke et al., 2202.00695]
[Franciolini et al., 2205.02153]
[Berlin et al., 2303.01518]
[Domcke et al., 2306.03125]

Guaranteed High Frequency Gravitational Wave Sources

Primordial plasma and solar plasma

Cosmic Gravitational Microwave Background
 (CGMB) can act as Big Bang thermometer

[Ghiglieri,Laine '15; Ghiglieri,Jackson,Laine,Zhu '20; AR,Schütte-Engel,Tamarit '20]

See also related talk by Anshuman Maharana

 Solar gravitational wave spectrum has no free parameter, but strain sensitivity of current helioscopes about fifteen orders of magnitude above prediction [Garcia-Cely,AR, 2407.18297]

Talk by Camilo Garcia-Cely

A Further WISP Candidate

Spin-2 WISP

- Massive spin-2 field emerging from bimetric gravity can be
 - wavy dark matter [Marzola,Raidal,Urban `18]
 - produced in the sun [Cembranos et al. `17]
 - searched for by photon regeneration experiments, in particular LSW and helioscopes [Biggio,Masso,Redondo `09]

A Further WISP Candidate

Spin-2 WISP

- Massive spin-2 field emerging from bimetric gravity can be
 - wavy dark matter [Marzola, Raidal, Urban `18]
 - produced in the sun [Cembranos et al. `17]
 - searched for by photon regeneration experiments, in particular LSW and helioscopes [Biggio,Masso,Redondo `09]
- Upper bound on energy loss of sun gives a bound on its coupling $G' = (8\pi M^2)^{-1}$
- Current and future helioscope bounds better than solar dark radiation bound, but less stringent than inverse square law tests
- Window of opportunity around 10 eV? [Galan,Garcia-Cely,AR , 24??.???]

Conclusions

We are on a good way to cover the most plausible mass and coupling ranges of the axion For the dark photon, we are missing a sense for the most plausible mass and coupling We need the complementarity of laboratory, astrophysics, and dark matter direct detection

DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

Popular WISP Candidates

Spin 1: Ultralight U(1) gauge bosons

DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

Popular WISP Candidates

Spin 1: Ultralight U(1) gauge bosons

Popular WISP Candidates

Spin 1: Ultralight U(1) gauge bosons

[Hebecker, Jaeckel, Kuespert, 2311.10817]

The Road Ahead in Astrophysics

Expect remarkable progress in astrophysics

- X-ray observations of bright active galactic nuclei (AGNs) hosted by rich clusters of galaxies are excellent probes of ALPs with sub-peV masses
- Future X-ray observatory
 Athena may improve current constraints by an order of magnitude
 [Sisk-Reynés et al., 2211.05136]

[https://raw.githubusercontent.com/cajohare/AxionLimits/master/plots/plots_png/AxionPhoton_UltraSimple_FullParameterSpace.png] DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

The Road Ahead in Astrophysics

Expect remarkable progress in astrophysics

- Axions efficiently produced in polar cap region of pulsars
- For neV 0.1 meV masses a sizable fraction of the sourced axion population gravitationally confined to the neutron star, accumulating over astrophysical timescales, forming a dense 'axion cloud' around the star
- For axion masses above 0.1
 micro-eV, energy primarily
 radiated from the axion cloud
 via resonant axion-photon
 mixing, generating a number of
 distinctive signatures:

[Nordhuis et al., 2307.11811]

- sharp line in radio spectrum of each pulsar located axion mass
- transient events arising from the reconfiguration of charge densities in the magnetosphere

[https://raw.githubusercontent.com/cajohare/AxionLimits/master/plots/plots_png/AxionPhoton_UltraSimple_FullParameterSpace.png] **DESY.** | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024

The Road Ahead in Astrophysics

Expect remarkable progress in astrophysics

- Axion-photon conversion on the still-intact magnetic fields of the progenitor star of SN1987A constrains ALPs all the way to 0.1 meV
- Gamma-ray observations of the next Galactic supernova, leveraging the magnetic fields of the progenitor star, could probe the vanilla axion band above roughly 50 µeV
- A new full-sky gamma-ray satellite constellation dubbed GALactic AXion Instrument for Supernova (GALAXIS) has been proposed to search for such future signals along with related signals from extragalactic neutron star mergers [Manzari et al., 2405.19393]

[https://raw.githubusercontent.com/cajohare/AxionLimits/master/plots/plots_png/AxionPhoton_UltraSimple_FullParameterSpace.png]
DESY. | Visions and Whispers of WISPs | Andreas Ringwald, 2nd General Meeting of COST Action Cosmic Whispers, Istanbul, Turkey, 2-6 September 2024