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Introduction

* An early Universe where high temperature strings dominate
the energy density !

∗ String thermodynamics subject with a long history, yet
many important open question

of both formal and phenomenological character remain
* Let me start by listing two recent (of many) reviews:

* Hagedorn String Thermodynamics in Curved Spacetimes and near Black Hole Horizons

T. G. Mertens (PhD Thesis), 2015

* Superstring Cosmology - A Complementary Review R Brandenberger, 2023

∗ Our focus: Boltzmann Equations, extracting Equilibration
rates & connect to some cosmological observables dark
radiation, high frequency gravitational waves 2



This talk is going to be based on

* A Frey, R Mahanta and AM
(Phys.Rev.D 105 (2022) 6, 066007)

* A Frey, R Mahanta, AM, F Muia, F Quevedo, G Villa
(JHEP 03 (2024). 112)

* A Frey, R Mahanta, AM, F Quevedo, G Villa
(2408.13803)
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Outline

∗ Boltzmann equation approach to string thermodynamics (in
flat space)

(To build up towards the cosmology)

∗ A Stochastic Background of High Frequency Gravitational
Waves from High Temperature Strings

4



1. Boltzmann Equations for Thermal Strings in flat space
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Boltzmann Equation Approach

∗ There are various approaches to study to thermal strings, the
Boltzmann equation approach was pioneered in:

D Lowe and L Thorlacius ’94; S Lee and L Thorlacius ’97
E. J. Copeland, T. W. B. Kibble, and D. A. Steer ’98

* Here, the basic idea is to write a rate equation for n(ℓ)
n(ℓ)dℓ : the number of strings of length (ℓ, ℓ+ dℓ)

(ℓ length of strings, defined as ℓ ≡ 2πα′M)

∂n(ℓ, t)

∂t
= Interaction Rates; ℓ >> 1

∗ Note that are only keeping track of the number of strings at
length ℓ, so a coarse grained description.
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Boltzmann Equation

We will touch upon three areas:

∗ The form of the interaction rates (& provide strong evidence
that they admit a simple interpretation)

* The structure of detailed balance & equilibrium solutions

∗ And finally: Non-equilibrium Dynamics

with effectively Non-compact directions, with cosmological
applications in mind.
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Interaction Rates and Random Walks

J Manes ’02

∗ Interaction rates

* The rates can be determined by string perturbation
theory. Here, we are working in the limit of ℓ >> 1.

* We have found strong evidence that they can be obtain
by a random walk picture of string interactions.

∗ To exhibit this, I will focus on the decay of a highly excited
closed string to two closed strings (other cases in the paper)
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Interaction Rates and Random Walks

∗ The analytic form of the decay rate of a high excited closed
string in a specific state |S⟩ to two other such strings

|S⟩ → |s ′⟩+ |s ′′⟩

is unknown.

* On the other hand, the decay rate for the inclusive process
where one averages over all initial states of the same mass
(length) and sums over final states with the same mass is
available.

∗ These are exactly the kind of decay rates that one is interested
if one wants to write a rate equation for n(ℓ).
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Interaction Rates

∗ The decay rate per unit length of the outgoing string ℓ′ is
given by

dΓ

dℓ′
∼ g2

s ℓ

(
ℓ

ℓ′(ℓ− ℓ′)

)d/2

in “d" non-compact directions.

* An important feature of these averaged processes is that the
total string length is conserved

ℓ = ℓ′ + ℓ′′
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Random Walk Interpretation of Highly Excited Strings

Next, let us give this decay rate a random walk interpretation

dΓ

dℓ′
∼ g2

s ℓ

(
ℓ

ℓ′(ℓ− ℓ′)

)d/2

So, What is the random walk interpretation ? It is has four
postulates

∗ String interactions rates are proportional to their length

∗ Long strings are in a random walk configuration.

∗ Interactions take place when strings intersect.

∗ Interaction rates are weighted by the probabilities for
intersection.
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Let us analyse our decay rate in this light

dΓ

dℓ′
∼ g2

s ℓ

(
ℓ

ℓ′(ℓ− ℓ′)

)d/2

∗ There is the overall factor of ℓ as string interactions
proportional to their length.

∗ What about the term in the brackets ?

* For this, Recall: A random walk of length ℓ in “d"
dimensions fills in a volume ℓd/2

* The probability that it closes on to itself is proportional to
1

ℓd/2 .
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∗ The probability that a string closes on to itself is proportional
to 1

ℓd/2 .

* With this, we can write the term is the brackets(
ℓ

ℓ′(ℓ− ℓ′)

)d/2

=

( 1
ℓ′

)d/2 ( 1
ℓ′′

)d/2(1
ℓ

)d/2
in terms of the closure probabilities of the three strings.

∗ Thus, the term in brackets is
the probability that closed mother string self intersects such

that there are daughter strings of length ℓ′ and ℓ′′

* So, the rate is in agreement with the random walk
interpretation.
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* This was one example, we have found that
all interaction rates available in the literature are consistent
with the random walk picture

* The next step, is to write the Boltzmann equation. In some
situations, some of the interaction rates needed are not
available from the string perturbation theory literature. Given
the evidence for the random walk picture we use have used it
to determine these interactions

∗ We plan verify these by explicit string perturbation theory
computations. Making this connection more concrete is an
interesting direction.
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Boltzmann Equations

Open and Closed Strings in the presence of space-filling branes

∂nc (l)

∂t
= +

b

2N
V⊥

no (l)

ld/2 − a
N

V⊥
lnc (l) +

1

2

∫ l−lc

lc

dl′

κa
nc (l

′)l′ nc (l − l′)(l − l′)

V
− κb lnc (l)

(
l

l′(l − l′)

)d/2


+

∫ ∞

l+lc

dl′

κb l
′nc (l

′)

(
l′

l(l′ − l)

)d/2
− κa

lnc (l)(l
′ − l)nc (l

′ − l)

V


+

∫ ∞

l+lc

dl′
(
κc

(l′ − l)no (l
′)

ld/2 − κd
lnc (l)(l

′ − l)no (l
′ − l)

V

)
.

∂no (l)

∂t
= +a

N

V⊥
lnc (l) −

b

2N
V⊥

no (l)

ld/2 +

∫ l−lc

lc

dl′
(

b

2NV∥
no (l

′)no (l − l′) − a
N

V⊥
no (l)

)

+

∫ ∞

l+lc

dl′
(

2a
N

V⊥
no (l

′) −
b

NV∥
no (l)no (l

′ − l)

)
+

∫ l−lc

lc

dl′
(
κd

l′(l − l′)nc (l
′)no (l − l′)

V
− κcno (l)

l − l′

l′d/2

)

+

∫ ∞

l+lc

dl′
(
κc

no (l
′)l

(l′ − l)d/2 − κd
lno (l)(l

′ − l)nc (l
′ − l)

V

)
+ (2-2 interactions),
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Detailed Balance, Equilibrium Solutions Boltzmann Equations

* Detailed balance: Equilibrium Solutions to Boltzmann
equations can be obtained by setting the net rate along every
reaction channel to be zero.

∗ Equilibrium solutions in our case of interest (four dimesnsions,
open string on branes)

nc(l) ≃ M4
s

e−l/L

(Ms l)5/2
, no(l) ≃ N2

DM
4
s e

−l/L , (1)

∗ L length of typical long string

∗ Also
L−1 = M2

s (β − βH)

Energy Density is dominated by nonrelativistic open strings
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Non-Equilibrium Dynamics

∗ Boltzmann Equations allow us to probe non-equilibrium
dynamics Various cosmological applications ...

* I will discuss the case of closed strings in all compact
directions in detail in the talk. Consider a perturbation δn(ℓ, t)

about the equilibrium solution.

n(ℓ, t) =
e−ℓ/L

ℓ
+ δn(ℓ, t)

∗ This satisfies an integro-differential equation

V

κ

∂δn(ℓ, t)

∂t
= −

(
ℓ2

2
+ ℓL

)
δn(ℓ, t) +

∫ l

0
dl′ ℓ′δn(ℓ′, t)

(
e
−(ℓ−ℓ′)

L − 1

)
− δE

(
e−ℓ/L − 1

)
,

where δE is the energy of the perturbation,

δE ≡
∫ ∞

0
dℓ′ ℓ′δn(ℓ′, t) .
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The integro-differential equation:

V

κ

∂δn(ℓ, t)

∂t
= −

(
ℓ2

2
+ ℓL

)
δn(ℓ, t) +

∫ l

0
dℓ′ ℓ′δn(ℓ′, t)

(
e
−(ℓ−ℓ′)

L − 1

)
− δE

(
e−ℓ/L − 1

)
,

∗ Interestingly, it is possible to find explicit solutions. By taking
derivatives, we show that δn(ℓ, t) needs to satisfy the
differential equation[

2(ℓ + L) +

(
ℓ2

2
+ ℓL +

V

κ

∂

∂t

)
∂

∂ℓ

](
δn(ℓ, t) + L

∂δn

∂ℓ

)
= 0 .

∗ And thus the problem can be divided into two simpler
problems:
a) Find the kernel of the operator

L ≡ 2(ℓ + L) +

(
ℓ2

2
+ ℓL +

V

κ

∂

∂t

)
∂

∂l
,

b) Translate the functions in the kernel, denoted K (ℓ, t), into
fluctuations through a first order inhomogeneous ODE:

δn(ℓ, t) + L
∂δn(ℓ, t)

∂ℓ
= K (ℓ, t) ,
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Non-Equilibrium Solutions

These have the form:

∗
δn(ℓ, t) = e−ℓ/L

∗

δnc(ℓ, t) =

√
π(c + tL2)

2
e−

ℓ
L
+A(t)2

L
Erf

(
A(t),A(t) +

√
c + tL2

2
ℓ

L

)

where Erf(z1, z2) = 2√
π

∫ z2
z1

e−t2dt is the incomplete error
function, and

A(t) =

√
c + tL2

2

(
1 − 1

c + tL2

)
.
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Non-Equilibrium Solutions

∗ Only zero energy perturbations

δE ≡
∫ ∞

0
dℓ′ ℓ′δn(ℓ′, t) = 0

settle to the background equilibrium solutions.

* These can be obtained by considering linear combination of
the two solutions

∗ They have a length dependent equilibration rates

Γ(ℓ) =
κ

V

(
ℓ2

2
+ ℓL

)
result in keeping with the basic estimates of D Lowe and L Thorlacius ’94
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∗ A similar approach can be used to study the dynamics in the
presence of non-compact directions case of interest (admixture
of open and closed strings, d=3)

Γo,o(l) ≃ gsNDM
2
s

(
L+

l

2

)
≳ gsNDM

2
s L,

Γo,c(l) ≃ gsNDM
2
s l +

gsMs

2ND(Ms l)3/2
≳ gsNDM

2
s l ∼ gsNDM

2
s L ,

Γc,c(l) ≃ g2
s l

(
ρc
M2

s

+
M2

s

(Ms lc)1/2

)
≃ g2

s M
2
s l ∼ g2

s M
2
s L. (2)

∗ ND : Number of D-branes

∗ gs string coupling
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A consistent cosmology

Putting all the elements together, one can have a cosmology with

∗ With equilibrium maintained by the splitting and joining
process of long strings

∗ Temperature

L(t) = L∗

(
a∗
a(t)

)3/2

, (3)

∗ Hubble during the epoch

H ≃
√
ρ

Mp
= NDLM

2
s

Ms

Mp
, (4)

One can check that such an epoch can take place after
inflation if there is a hierarchy between the Planck Mp and
String scale Ms .

∗ Epoch comes to an end with the decay of the long strings to
massless ones 22



Gravition Productions

∗ Gravitions are produced during the epoch from the decay of
the long open string.

* This process is Planck suppressed and takes the “greybody"
from

dΓo,g
dω

= A

(
Ms

Mp

)2

Msℓ(ω/TH)
2σ(ω/TH)

e−ω/TH

1 − e−ω/TH
,

Here, ℓ : length of the string, TH Hagedorn temperature.
σ(ω/TH) : grey body factor.

∗ This channel is not in equilibrium. There is a constant
production of gravitions from the direct decay of long strings.
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The Stochastic gravitational background

∗ The stochastic gravitational wave background today can be
computed:

h2ΩGW = 5 · 10−7
(

ND

5

)(
LendMs

5

)(
A

1

)( 1

Υ

)2 ( G

0.32

X

1

)4 ( Ms

1015 GeV

)(
Y

1

)5/2

X I

(
Y , B,

Ls

Lend

)
Y ≡ ω0/T0GX = 2πf0/T0GX (5)

Many quantities in the formulae, I which I do not define. It was two very interesting features:

∗ Peaks in the 50 GHz region

∗ Amplitude is directly proportional to the string scale.

∗ The Amplitude is significantly larger than the amplitudes of
GW waves obtained from the reheating epoch of the Standard
Model or its field theoretic extensions.
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1 5 10 50 100
f0(GHz)

10-21

10-16

10-11

10-6

h2ΩGW

T=10-4Mp

T=10-6Mp

T=10-8Mp

Figure 1: Comparison of the GW wave spectrum with that of the the
Standard Model

WHY ?

∗ Direct decay channels

ℓ → ℓ′ + g

∗ Exponential density of states (at high mass) implies that states
with m >> T can be relevant for the process. 25
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ω0
T

0.02

0.04

0.06

f

T3

fblackbody

fσ=1

fσ=σBB

fσ=σFF

Figure 2: Has a distinct shape

Comparing with Blackbody with the same ∆Neff and same peak

∗ Broader than the BB

∗ Low frequency behaviour: milder fall off than w3 than of
blackbody.
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Conclusions

∗ Boltzmann equations for highly excited strings: random walk
picture, equilibration rates

∗ A high frequency stochastic GW waves, with amplitude
significantly larger than that of the SM and its field theoretic
extensions
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