CA21106 General Meeting, Istanbul, 04/09/2024

Boson Cloud Atlas: **Direct Observation of** Superradiance Clouds

Alessandro Lenoci

Based on Majed Khalaf, Eric Kuflik, AL, Nicholas C. Stone 2408.16051

alessandro.lenoci@mail.huji.ac.il

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Dark mass around dark objects

BHs are dark but we can "see" them via: X-ray emission from accretion disks, lensing, star motion, GWs ...

Kerr BHs spacetimes are characterized by...

- mass M
- spin $J = \chi G M^2$

But what if some other extended dark mass is there around BH? DM Spikes, clouds...

Luminous vs Dynamical

Luminous and dynamical mass measurements of the Coma cluster hinted at Dark Matter

Two measurements to find dark mass

2408.16051

(Zwicky 1933)

Goal of the talk: Spin measurements of the same BH with two EM techniques can reveal dark mass around the BH

2408.16051

Measuring BH spins in accreting systems Weighing a dark cloud **Dark mass around BHs: superradiance** Weighing a boson cloud

2408.16051

Outline

Measuring BH spins in accreting systems

E.g. low mass X-ray binary (LXRB, old system)

 $M \sim 10 M_{\odot}$

BH

Inner Accretion Flow (X-ray/Gamma-ray)

X-ray Heating donor star (Optical/UV) $M_{\rm donor} \sim 5 M_{\odot}$ Stream & Stream-impact (Optical/UV)

Outer Accretion Disk (Optical/UV)

Jet (Radio/IR)

2408.16051

Companion Star (Optical/IR)

 $R \sim 10^{6-8} R_{\sigma}$

Spin and the ISCO (Kerr BH)

Spin χ

2408.16051

2408.16051

* Geometrically thin, optically thick disk, valid for systems accreting at $L \sim (0.01 - 0.3) L_{edd}$

[McClintok+, 1303.1583] **Dashed lines: MHD simulations** [Zhu+, 2012]

Method 1: Continuum fitting (CF)

2408.16051

Total CF model Thermal component Compton component No interstellar absorption

External parameters: M BH mass D distance to source *i* disk inclination to us

[McClintok+, 1303.1583]

100

Method 2: X-ray reflection

Thermal component

2408.16051

Method (2): X-ray reflection (iron Ka line)

2408.16051

- Measures the <u>physical</u> $R_{\rm ISCO} = GMf(\chi)$
- Needs a measure of BH mass to infer spin **
- Needs external measurements of D, ι
- **Reliable and understood**
- Non-equatorial disk? Sub-ISCO emission?
- Applied only to XRB so far: $M \sim 10 M_{\odot}$

** M measured dynamically (enclosed mass),

e.g. via Kepler's 3rd law with donor star

Iron Ka

- Measures the <u>dimensionless</u> $\frac{R_{\rm ISCO}}{R_{\rm g}} = f(\chi)$
- **Infers spin directly**
- **Geometry treated as nuisance/sanity check**
- **Uncertainties on geometry/plunging region**
- **Non-equatorial disk? Sub-ISCO reflection?**
- **Applicable to wide range of BHs: XRB & AGN**

Weighing (fractional) dark mass

2408.16051

Weighing (fractional) dark mass

$M_{\rm dyn} = M + M_d$

$R_{\rm ISCO} = (M + M_d)f(\chi_{\rm CF})$ $= Mf(\chi_{K\alpha})$

2408.16051

Weighing (fractional) dark mass

$M_{\rm dyn} = M + M_d$

$R_{\rm ISCO} = (M + M_d)f(\chi_{\rm CF})$ $= Mf(\chi_{K\alpha})$

 $\int f(\chi_{K\alpha})$ M_d $f(\chi_{\rm CF})$ M

2408.16051

Dark mass only if

 $\chi_{K\alpha} < \chi_{CF}$

Example inspired by 4U 1543-475 XRB

 $\zeta = \frac{M_d}{M} = \frac{f(\chi_{K\alpha})}{f(\chi_{CF})} - \frac{f(\chi_{K\alpha})}{f(\chi_{CF})}$

[Khalaf, Kuflik, AL, Stone 2408.16051]

2408.16051

 $\chi_{
m Klpha}$

 $\chi_{
m CF}$

 $\alpha \equiv \mu I$

we use the non-relativistic approximation, $\alpha < 1$

2408.16051

Consider an ultralight scalar field of mass μ

$$\sim R_{\rm g} = GM$$

fine structure constant

$$R_g \sim \mathcal{O}(0.1)$$

Far away from the BH, the field eq. of motion is the Schrödinger eq.

bound solutions are the hydrogen-like eigenstates

ntm

2408.16051

$$\frac{\partial}{\partial t}\psi = \begin{bmatrix} -\frac{\nabla^2}{2\mu} - \frac{\alpha}{r} \end{bmatrix} \psi$$

$$\sum_{c} c_{n\ell} \psi_{n\ell} \psi_{n\ell}$$

$$\omega_{n\ell m} = E_{n\ell m} + i\Gamma_{n\ell m}$$

 $0 < \omega <$

2408.16051

But a BH is not a proton! Ingoing boundary conditions at the horizon impose

instability rate

$\Gamma_{n\ell m} < 0$ usually but if

$$\leq m\Omega_+(\alpha,\chi)$$

Outer horizon angular velocity

Then we have superradiance (SR), i.e. $\Gamma_{n\ell m} > 0$ and a boson cloud forms at the expense of the BH mass and spin

The larger SR rate happens for $|n\ell m\rangle = |m + 1, m, m\rangle$

2408.16051

- SR stops when "saturation" is reached $\omega = m\Omega_+(\alpha, \chi)$

 $M_c \lesssim 0.1M$

boson cloud

Cloud peak $n^2/\alpha^2 \times R_g$

2408.16051

Geometry BH+cloud+donor+accretion disk

accretion disk **boson cloud**

ISCO few $\times R_g$

$\bigcup D$ **Donor** > $10^{\circ}R_{g}$

Cloud evolution for different boson masses

boson cloud fractional mass

 $\mathcal{E} = \frac{M_c}{m_c} = \frac{\mu}{m_c}$

2408.16051

Solar mass BH. Depending on M_{donor} :

 μ/eV

 $\checkmark r$

 $_{\chi}^{
m
ho}$

error

spin

-12

0.04

0.02

0.00

 10^{-1}

 10^{-2}

 10^{-10}

 10^{-10}

LXRB: old HXRB: young

[Khalaf, Kuflik, AL, Stone 2408.16051]

2408.16051

Massive BH (IMBH), old or young

[Khalaf, Kuflik, AL, Stone 2408.16051]

2408.16051

Conclusions

- be used to infer dark mass $M_d \gtrsim \text{few} \times 0.01M$
- Scenario motivated in BH superradiance, depending on: BH mass, boson mass and age of the system
- Complementary exclusion limits for clouds around XRB $M \sim 10 M_{\odot}$
- Massive BH (IMBHs?) may open a <u>direct discovery channel</u>

In the future, spin measurements through CF and iron Ka/reflection might

Conclusions

- be used to infer dark mass $M_d \gtrsim \text{few} \times 0.01M$
- Scenario motivated in BH superradiance, depending on: BH mass, boson mass and age of the system
- Complementary exclusion limits for clouds around XRB $M \sim 10 M_{\odot}$
- Massive BH (IMBHs?) may open a <u>direct discovery channel</u>

& Outlook

- Bosons self-interactions? Vector bosons? Accretion-fueled SR?
- Other motivated scenarios? DM spikes? 2408.16051

In the future, spin measurements through CF and iron Ka/reflection might

Thank you!

alessandro.lenoci@mail.huji.ac.il

2408.16051

Backup

System	Age [Gyr]	Ref	$ \chi K \alpha$	ι [d
LMC X-1	0.005	[70]	$0.97\substack{+0.02 \\ -0.25}$	fix
4U 1543-475	0.1 - 0.5	[73]	$0.67^{+0.15}_{-0.08}$	36.3
XTE J1550-564	4.0 - 13.5	[73]	$0.55\substack{+0.15 \\ -0.22}$	75 -
GRO J1655-40	0.2 - 0.6	[73]	> 0.9	30^{-1}
GRS1915+105	0.1 - 0.9	[73]	$0.976_{-0.021}$	67.1

^a However, it has been argued in [78] that $D \lesssim 2$ kpc, driving $\chi_{\rm CF} \sim 0.91$, in agreement with the K α method.

To have a look at the errors...

2408.16051

Backup

2408.16051

