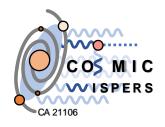
Report on WG4 Activities


Claudio Gatti - LNF INFN

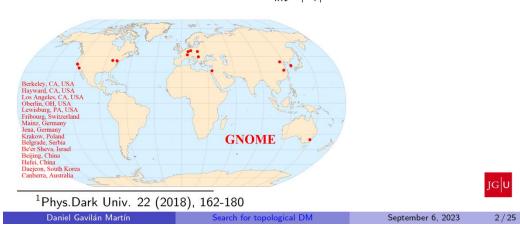
Marin Karuza – Uni Rijeka

MC Meeting

of

COST Action COSMIC WISPers (CA21106)

Inputs from the meeting


Networks

- 1. Help extending existing networks
- 2. Create links for new networks
- Create opportunities for joint proposal for axion experiments with multi detectors

What is a GNOME?¹

- Global Network of Optical Magnetometers for Exotic physics searches
- Looking for transient dark matter signals
- Sensitive to Axion-fermion coupling:

$$H_{int} = -rac{\hbar c^{3/2}}{f_{int}}rac{S_i}{|S_i|}\cdot
abla a$$

See talk by Daniel Gavilán

https://www.pi.uni-bonn.de/gravnet/en

HFGW

https://agenda.infn.it/event/40062/

See also this week talks by Camilo Garcia Cely and Luca Visinelli

How to compute GW-cavity couplings

Numerical results and discussion

For the calculations we have used realistic magnets:

Cavity	V(L)	Magnet	B_0 (T)	T_{phys} (mK)	T_{sys} (K)
C1	9526.1056	KLASH [52]	0.6	4500	8
C2	9.5243	CAPP [53]	12	30	1
C3	0.0095	CAPP [53]	19	30	1

Table 4. Characteristics of the magnets and parameters for the data acquisi

INFN-Frascati **KLASH**

 The form factor accounts for the coupling between the GW and the resonant modes as a function of the GW incidence angle θ in the XZ, YZ and XY planes:

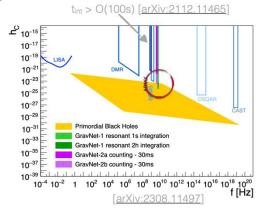
$$\tilde{\eta}_{m_{+,\times}} = \frac{\left| \int_{V} \vec{E}_{m}(\vec{r}) \cdot \vec{J}_{+,\times}(\vec{r}) \, dV \right|}{V^{1/2} \left| \int_{V} \vec{E}_{m}(\vec{r}) \cdot \vec{E}_{m}(\vec{r}) \, dV \right|^{1/2}}$$

WG4 COSMIC WISPERS MEETING (05/03/2024)

AITANA

A global network of detectors for HFGW

Summary



- To increase the sensitivity of halo scope style experiments we suggest to build a global network of detectors
 - Remember: SNR scales linear with number of detectors!
- Integrating measurement:
- Sample RF data, combine phase aligned, integrate
- Typical integration times too long to be sensitive to BH merges!
- Photon counting style experiments:
- Recent advancements in single RF photon detection allows to use coincidences of several detectors
- Using 20 independent detectors:
- Sensitivity: h₀ < 3x10⁻²² 3x10⁻²⁴

Requires large meta material cavities (high frequency @ large volume)

- Single frequency sufficient to hunt for PBH mergers!
- Could even combine measurements at different frequencies

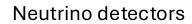
Kristof Schmieden WG4 - Cosmic whispers

Benito Gimeno

Kristof Schmieden

Axion Astrophysical Sources

See also this week talks by Maurizio and Elena Pinetti on JWST


https://agenda.infn.it/event/41392/ Sources of relativistic axion flux emission NS (polar cap) Dark stars Astro (thermal)70) (BHSR) Main Sequence $(Gyr, g_{a\gamma} = g_{12})$ $dN_a/d\omega$ [eV] NS $100M_{\odot}$ | merger Bosenovae $\{10^{10}, 10^{14}\}\,\text{GeV}$ PBH (Gyr) $10^{30} \, 10^{-4} \, \mathrm{M}_{\odot}$ Supernovae ial black $M_{\mathrm{PBH}} = 10$ 2212.11980 !12.11977) 10^{-6} 10^{-9} ω [eV] keV-MeV axions arXiv:2402.00100 How to detect bursts of relativistic nHz-THz-IR axions?

Helioscopes: Babylaxo

LHC detectors

Observing Axion Emission from Supernova with Collider Detectors arXiv:2203.01519

Cross section for supernova axion observation in neutrino water Cherenkov detectors arXiv:2306.17055

What else?

Detection of relativistic axions with cavities

Searches for Daily Modulations with the CAST-CAPP Detector

2nd General Meeting of COST Action COSMIC WISPers (CA21106)

Axion Quark Nugget (AQN) Model

- Originally proposed by Ariel Zhitnitsky (2003) to explain $\Omega_{DM} \sim \Omega_{visible}$.
- Also explain other mysteries (core-cusp, solar corona etc).
- Composite particles with axion domain walls.

Relativistic axions with <u_a> ~ 0.6c are emitted from AQNs as they penetrate the Earth.

Antiquark nugget structure. Source of the Source of the Source of the Earth.

1. Daily modulation (~10-20%).

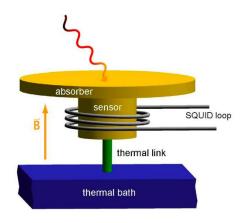
2. Seasonal phase shift.

A network to detect Axions Stars?

See talk by Edward Hardy "More axion stars from strings" during WG2 session

Properties of the substructure

- Mass o(0.1 meV)
- 1 event every 5 years
- 8h signal duration


$$\tau_{\oplus} = 5 \text{ yrs} \left(\frac{r_{0.1}}{r}\right)^2 \left(\frac{0.1}{f_{\text{star}}}\right) \left(\frac{\bar{M}_s}{10^{-19} M_{\odot}}\right)^3 \left(\frac{10^{10} \text{ GeV}}{f_a}\right)^4$$

$$\Delta t \simeq \frac{2 r_{0.1}}{v_r} \sqrt{1 - \frac{r^2}{r_{0.1}^2}} = 8 \text{ hrs} \left(\frac{10^{-19} M_{\odot}}{\bar{M}_s}\right) \left(\frac{f_a}{10^{10} \text{ GeV}}\right)^2 \sqrt{1 - \frac{r^2}{r_{0.1}^2}}$$

Factor $\gtrsim 10^6$ enhancement compared to background DM density

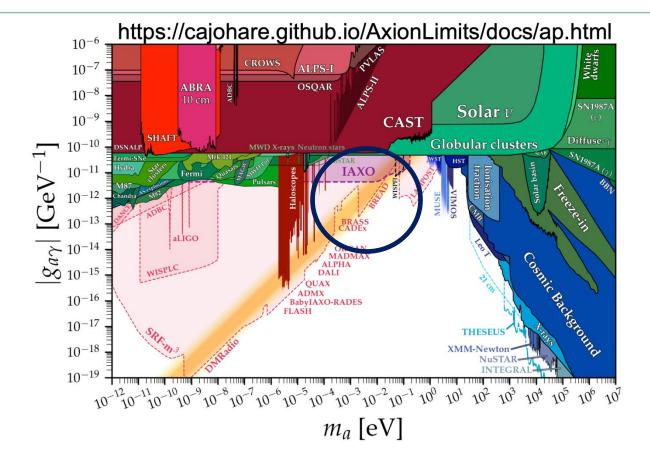
Common R&D


Create 4 sub-groups, and swg-leaders, for discussion on common R&D and related technologies

(Quantum) Sensors

Resonant cavities (materials, tuning ...)

Quality optics, mirrors, cavities

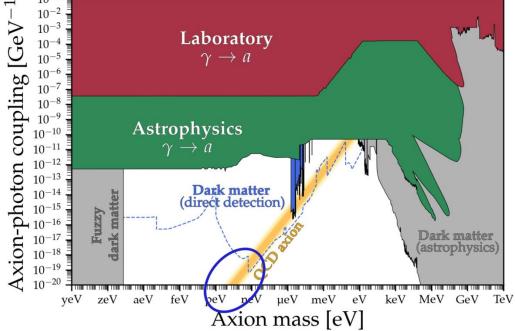


Data analysis, combination etc.

Fill the Gaps! From Edoardo's talk

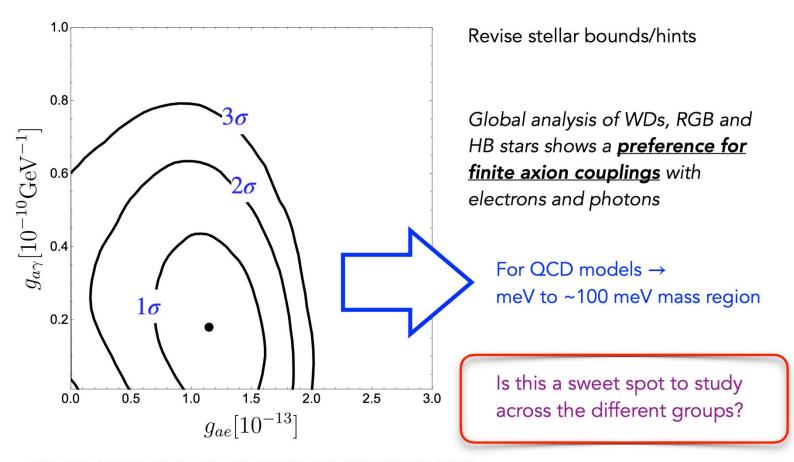
Backup slides (aka Ciaran's plot)

Start a discussion on experimental methods and techniques for searches in the THz and IR regions!



Andrea's talk

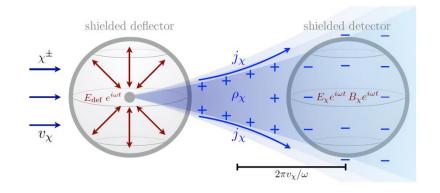
Coverage of Parameter Range in Future


In 2036:

- Seems that we are in a good way to cover the most plausible mass and coupling ranges of the axion by DM direct detection
- Caveats:
 - Local axion DM density could be much less than average 0.4 GeV/cm³
 - · Sensitivity holes around
 - peV to neV mass (M_P > f_a > M_{GUT})

From Maurizio's talk

The Road Ahead



Di Luzio, Fedele, M.G., Mescia, Nardi, arXiv:2109.10368 (2021)

Experimental Schemes

9	New	experimental schemes for WISPS searches	39
	9.1	Template Experimental Scheme	39
	9.2	The Piezoaxionic Effect arXiv:2112.11466	40
	9.3	Search for Dark Photon in microwave cavities with Rydberg atoms	
		(PRD 108, 035042 (2023))	40
	9.4	Production and detection of an axion dark matter echo arXiv:1902.00114	42
	9.5	Directly Deflecting Particle Dark Matter PHYSICAL REVIEW LET-	
		TERS 124, 011801 (2020)	42
	9.6	Searching for millicharged particles with superconducting radio-frequency	У
		cavities PHYSICAL REVIEW D 102, 035010 (2020)	46
	9.7	Sound of Dark Matter: Searching for Light Scalars with Resonant-	
		Mass Detectors PRL 116, 031102 (2016)	46
	9.8	Axion production in unstable magnetized plasmas. Phys. Rev. D	
		101, 051701(R)	46
	9.9	Searching for axion forces with spin precession in atoms and molecules	
		arXiv:2309.10023	46
	9.10	Proposal for gravitational direct detection of dark matter PHYSICAL	
		REVIEW D 102, 072003 (2020)	47
	9.11	Intensity interferometry for ultralight bosonic dark matter detection	
	-10	PHYSICAL REVIEW D 108, 015003 (2023)	47
	9.12	A Diffraction Grating for the Cosmic Neutrino Background and Dark	
		Matter arXiv:2303.04814	47

Continue collecting ideas on new WISPs experiments. Discussion already ongoing on proposed schemes!

From WG4 report

Scalar field production in the Sun

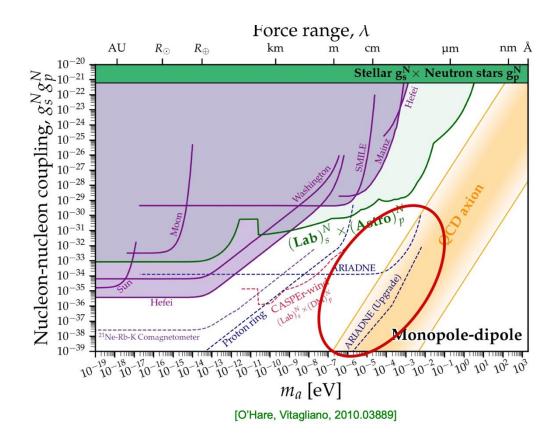
New ideas for experiments!

Axions and scalars from the Sun

Luca Visinelli

New exploration frontier: Scalar field production in the Sun

We have considered solar chameleons produced from


$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\partial_{\mu}\phi)(\partial^{\mu}\phi) - V_{\text{eff}}(\phi) + \frac{1}{M_{\gamma}^4} (\partial_{\mu}\phi)(\partial_{\nu}\phi) T_{\gamma}^{\mu\nu} \right] + S_{\text{SM}}$$

$$V_{\mathrm{eff}}(\phi) = V_{\mathrm{self}}(\phi) + rac{eta_m}{M_{\mathrm{Pl}}}
ho_m \phi + rac{eta_\gamma}{M_{\mathrm{Pl}}} \phi rac{1}{4} F^{\mu
u} F_{\mu
u} \qquad V_{\mathrm{self}} \sim \Lambda^4$$

See the talk by Anne Davis right after mine

See also talk by Anne Davis and Tom O'Shea \rightarrow 5th force experiments

Exotic/new interactions

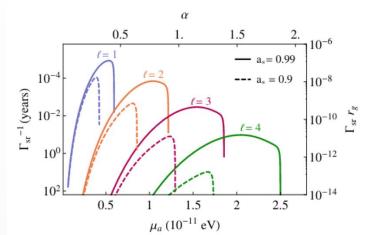
Monopole-philic axion

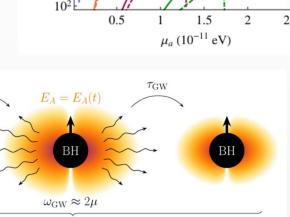
$$(\partial^{2} + m_{a}^{2}) a = -(g_{a\gamma} - g_{am}) \mathbf{E}_{0} \cdot \mathbf{B}_{0},$$

$$\nabla \times \mathbf{B}_{a} - \dot{\mathbf{E}}_{a} = g_{a\gamma} (\mathbf{E}_{0} \times \nabla a - \dot{a} \mathbf{B}_{0}),$$

$$\nabla \times \mathbf{E}_{a} + \dot{\mathbf{B}}_{a} = -g_{am} (\mathbf{B}_{0} \times \nabla a + \dot{a} \mathbf{E}_{0}),$$

$$\nabla \cdot \mathbf{B}_{a} = -g_{am} \mathbf{E}_{0} \cdot \nabla a,$$


$$\nabla \cdot \mathbf{E}_{a} = g_{a\gamma} \mathbf{B}_{0} \cdot \nabla a$$


New Sources/Superradiance

- Superradiant growth
 - ★ Baryonic/DM accretion
 → heavier clouds
 Hui+ [2208.06408]
- GW emission of the cloud $au_{\rm GW} \simeq 10^8 {
 m yr} \left({M \over 10 M_{\odot}} \right) imes \left({\alpha \over 0.07} \right)_{|211\rangle}^{-14} \ / \ \left({\alpha \over 0.2} \right)_{|322\rangle}^{-18}$

Superradiance Instability Phase

 (M_i, J_i)

Gravitational Wave Emission Phase

Refs: Arvanitaki+ [0905.4720, 1004.3558, 1411.2263]; Yoshino, Kodama [1312.2326]; Brito+ [1411.0686, 1706.06311, 1501.06570]; Siemonsen, May, East [2211.03845]; Fig: (U) Arvanitaki+ [1411.2263]; (D) Tsukada+ [2011.06995]

See talk by Mateja Boskovic

From Michele's talk

Motivate experiments in new regions of parameter space!

WG1: Future activities

- Contributions to organisation of meetings and training schools
- Dissemination talks at major conferences and outreach activities
- Monthly WG1 meetings:
 Same format for year 3: topical discussions, invitation of external speakers, recent papers...
- More STSM: please apply!
- In year 3: organise a 3-day WG1 workshop in person (in Bologna?)
 focused on a specific topic: axions? hidden photons? dark sector physics?
- Deliverables:
 - i) talks at major conferences and workshops
 - ii) publications on top refereed journals
 - iii) contribution to the writing up of white paper and scientific reports
 - iv) increase interactions with other WGs
 - predictions from UV motivated classes of models superimposed on exclusion plots
- Suggestions!

Inputs from WG1,2,3:

- 1 Motivate regions of parameter space (from string-axions and axion-strings):
 from nHz to IR
 - 2 WISPS and HFGW sources (Sun, Supernova, early Universe, exotic objects)
 - 3 New interactions (fifth forces): ga,gv,gp,gs, monopole-philic axion
 - 4 New experimental schemes: e.g. scalars from the Sun
- 5 Production and interaction rates (cross section, overlap integrals etc.): e.g. relativistic axion with cavities; MeV axion in particle detectors; HFGW interaction in axion experiments (and viceversa).

Expected outputs from WG4:

- 1 Prospects for probing theoretically motivated regions
- 2 Detection techniques for probing wisps from different sources (space missions?)
- 3 Precision experiments for exotic interactions
 - 4 Investigate feasibility of new experimental schemes
- 5 Compute experiment sensitivities
 - 6 Needed R&D
 - 7 Networks

