Searching for ALP Dark Matter with a 1000 km baseline interferometer 2nd General Meeting Cosmic Wispers, Istanbul

Daniel Gavilán Martín

Helmholtz-Institut Mainz/JGU

August 6, 2024

Daniel Gavilán Martín

2 Interferometric ALP search

Daniel Gavilán Martín

What is a GNOME?¹

- Global Network of Optical Magnetometers for Exotic physics searches
- Looking for transient and background dark matter signals
- Sensitive to Axion-nucleon coupling:

$$\begin{aligned} \mathcal{H}_N = & \mathsf{g}_{\mathsf{a}NN} \nabla \mathsf{a} \cdot \sigma_N \,, \\ & \mathcal{H}_P = & \mathsf{g}_{\mathsf{a}PP} \nabla \mathsf{a} \cdot \sigma_P \,, \end{aligned}$$

What can a GNOME do?² Look for ELFs³

• Exotic Low-mass Field (ELF) search with multi-messenger astronomy

 High energy astrophysical events detected by GW detectors

What can a GNOME do?

- Stochastic ALP DM field fluctuations
- Axion Domain Walls⁴
- Q-balls
- and much more!

Daniel Gavilán Martín

August 6, 2024

JGU

25

30

trajectory

How does a GNOME work?

• Magnetometers as Dark Matter sensors

Daniel Gavilán Martín

How does a GNOME work?

• Magnetometers as Dark Matter sensors

- 5 Science Runs since 2017
- Science Run 6 starting soon!

- Hot vapour cell with K, Rb and He magnetically shielded
- Polarize Rb electron → K electron and He nucleus polarization

- Hot vapour cell with K, Rb and He magnetically shielded
- Polarize Rb electron \rightarrow K electron and He nucleus polarization
- Apply a compensation field
- More sensitive to spin couplings, including rotations and exotic interactions

- Hot vapour cell with K, Rb and He magnetically shielded
- Polarize Rb electron → K electron and He nucleus polarization
- Apply a compensation field
- More sensitive to spin couplings, including rotations and exotic interactions

- Hot vapour cell with K, Rb and He magnetically shielded
- Polarize Rb electron → K electron and He nucleus polarization
- Apply a compensation field
- More sensitive to spin couplings, including rotations and exotic interactions

How sensitive are they?

Most stringent constraints on ALP DM at $\mathcal{O}(1)$ Hz. What about lower frequencies?

Daniel Gavilán Martín

I GNOME and the K-Rb-³He comagnetometer

Daniel Gavilán Martín

arXiv: 2408.02668

Two comagnetometers as an interferometer

- $\bullet\,$ Situated in Mainz and Krakow, $\sim\,$ 1000 km apart
- Time synchronized measurement
- Lower frequency regime \rightarrow coherent signal
- We calibrate the frequency response of the comagnetometers⁵ every 25 h

⁵Padniuk et al. Phys. Rev. Research 6, 013339

arXiv: 2408.0266

3D Gradient of the ALP field

• Spread of frequencies

$$\Delta\omegapprox\omega_{a}rac{v_{0}^{2}}{c^{2}}pprox\omega_{a}\! imes\!10^{-6}$$

• Coherence time $\label{eq:tau} au \sim 1/\Delta \omega$

3D Gradient of the ALP field

• Spread of frequencies

$$\Delta\omegapprox\omega_{a}rac{ extsf{v}_{0}^{2}}{c^{2}}pprox\omega_{a} imes10^{-6}$$

• Coherence time $\label{eq:tau} au \sim 1/\Delta \omega$

$$\nabla a(t) \sim \sum_{n}^{N} \mathbf{v}_{n} \cos(\omega_{a}t + \phi_{n})$$
$$= \hat{\mathbf{x}} \alpha_{x} \cos(\omega_{a}t + \phi_{x}) + \hat{\mathbf{y}} \alpha_{y} \cos(\omega_{a}t + \phi_{y})$$
$$+ \hat{\mathbf{z}} \alpha_{z} \cos(\omega_{a}t + \phi_{z})$$

3D Gradient of the ALP field

• Spread of frequencies

$$\Delta\omegapprox\omega_{a}rac{v_{0}^{2}}{c^{2}}pprox\omega_{a} imes10^{-6}$$

• Coherence time $au \sim 1/\Delta \omega$

$$\nabla a(t) \sim \sum_{n}^{N} \mathbf{v}_{n} \cos(\omega_{a}t + \phi_{n})$$
$$= \hat{\mathbf{x}} \alpha_{x} \cos(\omega_{a}t + \phi_{x}) + \hat{\mathbf{y}} \alpha_{y} \cos(\omega_{a}t + \phi_{y})$$
$$+ \hat{\mathbf{z}} \alpha_{z} \cos(\omega_{a}t + \phi_{z})$$

- $\nabla a(t)$ depends on six random parameters:
 - α : Rayleigh distributed random number
 - ϕ : phase of the field in each orthogonal direction

Daniel Gavilán Martín

ALP signature in the frequency domain

• A carrier at $\omega_{\rm a}$ and two sidebands at $\omega_{\rm a}\pm\omega_{\rm e}$

ALP signature in the frequency domain

• A carrier at ω_{a} and two sidebands at $\omega_{a} \pm \omega_{e}$

Sidebands are in general asymmetric!

Search strategy

• We combine the ALP signatures properly shifted

JGU

Search results

• No ALP candidate is found

Search results

• No ALP candidate is found

• Independent analysis of amplitudes at ω_e

arXiv: 2408.02668

Exclusions plots for proton and neutron coupling

- Constraints rescaled by nuclear spin content of ³He
- $\bullet\,$ Reduction of sensitivity due to incoherence of the field for frequencies $>10^{-2}\,{\rm Hz}$

Outlook

- We present a search in the ultra-low ALP mass range
- It extends for nine orders of magnitude in laboratory unconstrained space in both neutron and proton coupling.
- The experimental set up is based on two comagnetometers in separate locations.
- The comagnetometers are part of Advanced GNOME and will run together as a network to look for transient DM events (ELFs, axion domain walls, Q-balls, ...)

Acknowledgements

Grzegorz Łukasiewicz

Klinger

Nathaniel Figueroa

Derek Jackson Kimball

Magdalena Smolis

Arne Wickenbrock

Mikhail Padniuk

Dmitry Budker

Alexander Sushkov

Szymon Pustelny

Polarization dynamics in a comagnetometer

• Frequency response for arbitrary perturbation:

$$\mathcal{F}_{\pm}^{r} = -a \frac{\omega_{n}(\alpha_{e} - \alpha_{n}) + (\pm\omega + \gamma_{n}\Delta_{B_{z}} - i|R_{n}|)\alpha_{e}}{(\pm\omega + \omega_{e} + \Delta_{B_{z}}\gamma_{e}/q - i|R_{e}|)(\pm\omega + \omega_{n} + \gamma_{n}\Delta_{B_{z}} - i|R_{n}|) - \omega_{e}\omega_{n}}$$

- $\alpha =$ interaction coupling
- **a** = amplitude
- Δ_{B_z} = detuning from compensation point
- R =Relaxation rate
- $\omega = Larmor frequency$

Daniel Gavilán Martín

Comagnetometer response calibration routine

Daniel Gavilán Martín

Comagnetometer response demonstration

