Status and Perspectives on Axion searches

Maurizio Giannotti, Universidad de Zaragoza & CAPA Barry University

ISU ISTINYE UNIVERSITY

2nd General Meeting of COST Action COSMIC WISPers 3 September, 2024

The large context: FIPs And WISPs

Theoretical, Phenomenological and Experimental motivations

In 2018, the dark matter community produced a Basic Research Needs Report (BRN) for <u>Dark Matter New Initiatives</u> (DMNI) (<u>Kolb et al, 2018</u>) Beyond G2, which currently funds ADMX. Pushes Sub-GeV searches and phase 3 specifically Sub-eV.

Significant emphasis in <u>Snowmass (2021)</u> and from the <u>APPEC</u> (2022). Recommendations/Opportunities include:

- Pursue the QCD Axion with a Collection of Small-Scale Experiments
- Support Enabling Technologies
- Support Theory and Astrophysics Beyond the QCD Axion

- Interconnection between Axion DM and quantum computing communities for R&D towards quantum sensing

WISP COST Action: CA21106 - COSMIC WISPers in the Dark Universe (2022) FPC: Feebly Interacting Particles Physics Center (2020)

- I. Irastorza, J. Redondo, Prog.Part.Nucl.Phys. 102 (2018)
- L. Di Luzio, M.G., Nardi, Visinelli, Phys.Rept. 870 (2020)
- A. Caputo, G. Raffelt, PoS COSMICWISPers (2024)

A few facts about QCD Axions

1- The axion potential can be calculated in QCD

2- The axion couplings are model dependent

3- Requires interaction with nEDM (besides with gravity)

4- Axion contributes to dark matter

$$m_a \simeq 5.7 \left(\frac{10^{12} \,\mathrm{GeV}}{f_a} \right) \mu \mathrm{eV}$$

Where are the axions?

~10 eV

Where are the axions?

Minimal field extension and basic phenomenological requirements select a narrow band

Di Luzio, Mescia, Nardi, Phys.Rev.Lett. 118 (2017), Phys.Rev. D96 (2017)

Di Luzio, Fedele, <u>M.G</u>., Mescia, Nardi, *JCAP* 02 (2022) 02, 035

ALP Parameter Space

Laboratory Searches

ALPS II

A. Lindner, Heidelberg July 2024

I. Irastorza, J. Redondo, Prog.Part.Nucl.Phys. 102 (2018)

Polarization experiments

Future project under discussion (as of 2024) at PBC: VMB@CERN.

See Proceeding of 1st COST General Meeting: PoS COSMICWISPers (2024) 032 , April 2024

Astrophysical sources

https://cajohare.github.io/AxionLimits/

Accounting for (possible) progenitor magnetic field

Accounting for possible progenitor magnetic field

Manzari, Park, Safdi, Savoray arXiv: 2405.19393

Stellar Bounds

Detection of Solar Axions

The CERN Axion Solar Telescope

Most sensitive axion helioscope:

- 9m superconducting LHC prototype dipole magnet
- X-ray optics
- Detectors

- \rightarrow Solar WISPs
- \rightarrow DM axions
- → Dark Energy

•••

New CAST Bound

C. Margalejo Blasco, J. Ruz, et al (CAST collaboration, 2024) arXiv:2406.16840

Solar Axions: the Next Generation

Technological prototype of IAXO with high performance and discovery potential

- Two magnet bores (10 m, Ø 70 cm).
 10 m & 2T magnet
- Custom X-ray optic + XMM-Newton flight spare optic

- Relevant physical outcome (~10× CAST B^2L^2A)
- Magnet will be upscalable version for IAXO
- X-ray optics/detectors close to final IAXO configuration (focal length, performance)

BabylAXO

- Approved by DESY in 2019.
- Commissioning expected by 2027 To be installed in HERA South

 A <u>magnet Conceptual Design</u> <u>Report</u> (CDR) was produced and reviewed in April 2024 → very positive outcome.

I. Irastorza (U. Zaragoza), T. Kontos (École Normale Supérieure de Paris), S. Paraoanu (Aalto University), W. Wernsdorfer (KIT)

Axioelectric Helioscopes

Large underground DM detectors. Axioelectric = axion analog to the photoelectric effect

$$\sigma_{\rm ae} \propto \left(\frac{E_a}{m_e}\right)^2$$

Previous hint conclusively dismissed by the first science run of the XENONnT

 $g_{ae} \lesssim 2 \times 10^{-12}$

E. Aprile et al., Phys.Rev.Lett. 129 (2022)

Hunting Solar Axions: <u>NuSTAR</u>

• J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u>

(With Jirı Stepan for solar magnetic field modeling)

Hunting Solar Axions: <u>NuSTAR</u>

J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u>

Haloscopes

https://cajohare.github.io/AxionLimits/

Some Recent Results:

- ORGAN Phase 1b exclude $g_{a\gamma\gamma} \ge 4 \times 10^{-12} \text{GeV}^{-1}$ with 95% in the 107.42-111.93 μ eV mass range. Quiskamp et al, Phys.Rev.Lett. 132 (2024) 3
- QUAX: probed g_{aγγ} below 10⁻¹³GeV⁻¹ for m_a in the range 42.8178 42.8190 eV.
 R. Di Vora et al, Phys.Rev.D 108 (2023) 6
- CAPP 12T, $@m_a \simeq 22 \,\mu {\rm eV}$, Y. Kim et al., submitted Dec. 2023
- RADES, $@m_a \simeq 36.6 \,\mu eV_{,,}$ submitted March 2024

Micro eV mass range:

Most experience.

- ADMX: proven sensitivity to few μeV

Micro eV mass range:

Most experience.

- ADMX: proven sensitivity to few μeV

High mass:

HAYSTAC, CAPP, MADMAX, QUAX, ORGAN etc.

- Significant advances from CAPP
- CAPP, QUAX, HAYSTAC touch the QCD band
- Experimental application of quantum technologies for axion searches by HAYSTAC <u>Nature 590 238</u> (2021): double the scanning rate for axions

Many proposals to probe the higher mass region

Low mass: FLASH and BabyIAXO (RADES)

FLASH and BabyIAXO will cover the region left of ADMX.

Preparing for TDR

Expected to reach the QCD band.

Jan 19th 2024: FINUDA cooled down to 4K and energized with a current of 2706 A, generating a magnetic field of 1.05 T

Very Low Mass Haloscopes

Global Effort to Probe the Full QCD-Axion Band

From <u>C. O'Hare</u>

P. Carenza, M.G., J.Isern, A. Mirizzi, O. Straniero, in preparation

P. Carenza, M.G., J.Isern, A. Mirizzi, O. Straniero, in preparation

P. Carenza, M.G., J.Isern, A. Mirizzi, O. Straniero, in preparation

P. Carenza, M.G., J.Isern, A. Mirizzi, O. Straniero, in preparation

P. Carenza, M.G., J.Isern, A. Mirizzi, O. Straniero, in preparation

Conclusions and Comments

Important progress in last years in the attempts to detect axions in all fronts:
 ✓ Huge progress with cavity haloscopes + several new proposals
 ✓ Major LSW experiment starting (ALPS II)
 ✓ Major new Helioscope proposal under progress (IAXO)
 ✓ Several innovative ideas

Most interesting parameter space accessible to Next Gen. Experiments → a groundbreaking discovery is possible

• Axions with couplings at the current thresholds would excellent astrophysical messengers.