Axion Conversion in the Solar Magnetic Field

Elisa Todarello (University of Turin and INFN Turin)

2nd General COSMIC WISPers Meeting, Istanbul, 06.09.2024

- Axion-photon conversion
- The Sun
- **Conversion of axion dark matter in the solar atmosphere E.T.**, M. Regis, M. Taoso, M. Giannotti, J. Ruz, J. K. Vogel "The Sun as a target for axion dark matter detection" Phys. Lett. B 854 (2024) 138752
- Conversion of solar axions in the solar atmosphere

Irastorza, C. S. Kim, T. O'Shea, M. Regis, D. M. Smith, M. Taoso, J. Trujillo Bueno

"NuSTAR as an Axion Helioscope"

arXiv:2407.03828 [astro-ph.CO]

J. Ruz, E. T., J. K. Vogel, M. Giannotti, B. Grefenstette, H. S. Hudson, I. G. Hannah, I. G.

Axion-Photon Conversion

 $\mathcal{L}_{a\gamma\gamma} = \frac{1}{4}gaF_{\mu\nu}\tilde{F}^{\mu\nu}$

Axion-Photon Conversion

In a static background $\omega = \omega_a$

Index of refraction in a weakly magnetized plasma

$$n = \frac{k}{\omega} = \frac{\sqrt{\omega^2 - \omega_p^2}}{\omega} \quad \checkmark$$

 $(n^2\omega^2 + \nabla^2)\vec{A} = ig\omega\vec{B}_0a_0 \ e^{i\vec{k}_a\cdot\vec{x}}$

The photon gets an effective mass

Axion-Photon Conversion

If fields propagating along a given direction

$$P_{a \to \gamma}(h) = \frac{1}{4}g^2 \frac{1}{v_a} \left| \int_0^h dh' \frac{1}{\sqrt{n}} B_{\perp}(h') e^{i \int_0^{h'} dh'' q(h'')} \right|^2$$

$$q = k - k_a = n\omega - \sqrt{\omega^2 - m_a^2} \qquad \vec{k}_a \longrightarrow \vec{k}$$

Sikivie, Rev.Mod.Phys. 93 (2021) Leroy et al., PRD 101 (2020) 12

 $P_{a \to \gamma}(h) = \frac{1}{4}g^2 \frac{1}{v_a} \left| \int_0^n dh' \frac{1}{\sqrt{n}} B_{\perp}(h') e^{i \int_0^{h'} dh'' q(h'')} \right|^2$

 $q = 0 \rightarrow q = k - k_a = \sqrt{\omega^2 - \omega_p^2 - \sqrt{\omega^2 - m_a^2}} = 0 \rightarrow m_a = \omega_p$

Stationary phase approximation

Resonant Conversion

 $P_{a \to \gamma} \simeq \frac{\pi}{2} \left. \frac{g^2 B_{\perp}^2}{v_a \, \omega_p'} \right|_{h=h_c}$

The Sun

The Sun's Layers

K. Strong et al., Bulletin of the American Meteorological Society, vol. 93, issue 9, pp. 1327-1335

J. Redondo, JCAP 12 (2013) 008

Axions from the Solar Core

Axion Flux at Earth

Solar composition from Bahcall, Pinsonneault, Phys.Rev.Lett. 92 (2004) 121301

The Solar Atmosphere

__ 1 000 000 °C Corona

10 000 °C Upper Chromosphere 4 000 °C Lower Chromosphere 6 000 °C Photosphere

S. W. McIntosh et al., Sol Phys 295, 163 (2020). Data from www.sidc.be/silso

Quiet Sun's Magnetic Field

Fig. 16 Schematic, simplified structure of the lower quiet Sun atmosphere (dimensions not to scale): The solid lines represent magnetic field lines that form the magnetic

Our Model of Quiet Sun's Atmosphere

Perpendicular magnetic field

Plasma frequency

More on this later

The magnetic field above a sunspot can reach thousands of Gauss!

Sunspots

Muñoz-Jaramillo et al., Nat Astron 3, 205–211 (2019)

Conversion of Axion Dark Matter

Conversion of Axion DM: whole Sun

 $\omega_p \propto h^{-lpha}$ Assuming

$$P_{a \to \gamma} \simeq \frac{\pi}{2} \left. \frac{g^2 B_{\perp}^2}{v_a \, \omega_p'} \right|_{h=h_c}$$

Absorption

Observational Prospects with SKA

Sunspots are seen as point sources, even after broadening due to scattering off inhomogeneities

The whole Sun is not a point source

Account for degradation in sensitivity due to background from Sun

Large dynamical range. Difficult but achievable

See also An et al., Nature Commun. 15 (2024) 915 An et al., PRL 126 (2021) 18

Conversion of Solar Axions

NuSTAR as an Helioscope

Observed the center of the solar disk for 23,000 seconds during solar minimum in 2020

Signal region $r < 0.1 R_{\odot}$

Background region $0.15R_{\odot} < r < 0.3R_{\odot}$

Remove wedges containing X-ray bright points

NuSTAR as an Helioscope

Axion Flux at Earth

Solar composition from Bahcall, Pinsonneault, Phys.Rev.Lett. 92 (2004) 121301

Conversion of Ultra-relativistic Axions

In the limit $E \gg \omega_p$

$$P_{a \to \gamma}(h) = \frac{1}{4}g^2 \Big| \int_0^h dh' B_{\perp}(h') e^{i \int_0^{h'} dh'' q(h'')} e^{-\frac{1}{2} \int_{h'}^h dh'' \Gamma(h'')} \Big|^2$$

q = k -

$$k_a \approx \frac{\omega_p^2 - m_a^2}{2E}$$

$$=\sum_{i}n_{i}\sigma_{i}$$

Our Model of Quiet Sun's Atmosphere

Perpendicular magnetic field

Plasma frequency

Photosphere (Rempel, 2014 ApJ 789 132)

supergranulation

Magnetic Field

Corona (Predictive Science Inc. for 2019 eclipse)

- CML = 315.01 · Solar North Up
- Interpolation +--->

Conversion Probability

 $q = k - k_a \approx \frac{\omega_p^2 - m_a^2}{2E}$

NuSTAR as an Helioscope

NuSTAR as an Helioscope

