‡Fermilab

Hunting dark matter lines with JWST

Elena Pinetti

Cosmic WISPers – 5th September 2024

Dark matter in the Universe

Dark Matter candidates

Favorite imaginary friends: axions

Outline

Dark matter flux

□ JWST Observations

Results & Prospects

QCD axions & axion-like particles

For more on axions

Axion Cosmology

Pierre Sikivie (CERN and Florida U.) (Oct, 2006)

Published in: *Lect.Notes Phys.* 741 (2008) 19-50 • Contribution to: Joint ILIAS-CAST-CERN Axion Training at CERN, 19-50 • e-Print: astro-ph/0610440 [astro-ph]

Axion Cosmology					
David J. E. Marsh (King's Coll. London) (Oct 26, 2015)					
Published in: <i>Phys.Rept.</i> 643 (2016) 1-79 • e-Print: 1510.07633 [astro-ph.CO]					
🔓 pdf	ି DOI	[→ cite	🔂 claim	c reference search	

Ciaran A.J. O'Hare (Mar 26, 2024)

Published in: PoS COSMICWISPers (2024) 040 • Contribution to: COSMICWISPers, 040 • e-Print: 2403.17697 [hep-ph]

🔓 pdf	∂ DOI	ite ⊡	🗔 claim	ন্থি reference search	Ð	3 citations
-------	-------	-------	---------	-----------------------	---	-------------

Primakov production in stars: $\gamma \rightarrow a$

 \boldsymbol{u}

2

3

Conversion $a \leftrightarrow \gamma$ in laboratory and astrophysical B-fields

Axion-photon interactions

3 Axion decay $a \rightarrow \gamma \gamma$

eV-scale axions

 $m_a \sim 1 \text{ eV}$

Infrared photons

Hunting Dark Matter Lines in the Infrared Background with the James Webb Space Telescope

Ryan Janish^a Elena Pinetti^{a,b}

^aFermi National Accelerator Laboratory, Theoretical Astrophysics Department, Batavia, Illinois, 60510, USA

^bUniversity of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL 60637, USA

arXiv:2310.15395, submitted to PRL

+ Follow-up paper with more JWST data!

Sensitivity of JWST to eV-Scale Decaying Axion Dark Matter

Sandip Roy,^{1,*} Carlos Blanco,^{1,2,†} Christopher Dessert,^{3,‡} Anirudh Prabhu,^{4, §} and Tea Temim^{5,¶} ¹Department of Physics, Princeton University, Princeton, NJ 08544, USA ²Stockholm University and The Oskar Klein Centre for Cosmoparticle Physics, Alba Nova, 10691 Stockholm, Sweden ³Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA ⁴Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA ⁵Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA (Dated: November 10, 2023)

arXiv:2311.04987v1

First Result for Dark Matter Search by WINERED

Wen Yin¹, Taiki Bessho², Yuji Ikeda^{3,2}, Hitomi Kobayashi², Daisuke Taniguchi⁴, Hiroaki Sameshima⁵, Noriyuki Matsunaga⁶, Shogo Otsubo³, Yuki Sarugaku³, Tomomi Takeuchi³, Haruki Kato³, Satoshi Hamano⁴, Hideyo Kawakita^{3,7}

arXiv:2402.07976v1

Interesting targets

Where to look?

Blank-sky observations

2 Dwarf galaxies

1

Blank-sky observations (diffuse)

Pros:

- Tons of archival data
- No need to apply for time on the telescope
- DM signal-to-background more favourable

Cons:

- The DM signal might be low if the location is far from the GC
- Less deep than target observations

Dwarf galaxies

Pros:

- DM dominated
- Favourable signal-to-background ratio
- Close to us
- Complementary searches in other wavelengths (Fermi and MAGIC in gamma-rays)

Cons:

- Low signal
- Some dwarfs have large uncertainties on the D-factor and J-factor

Galaxy clusters

Pros:

- Strong DM signal
- Expected to host a large population of subhalos which boost the signal

Cons:

- Far away from us
- The contributions of the substructures is uncertain
- Large uncertainties

Observed dark matter signal

Dark matter signal

James Webb Space Telescope

JWST Instruments

NIRSPEC and MIRI

NIRSpec: Near-Infrared Spectrograph $\Delta \lambda = 0.6 - 5 \ \mu m$

MIRI: Mid-Infrared Instrument $\Delta \lambda = 4.9 - 27.9 \ \mu m$

JWST collaboration

Observations

GN-z11

- High-redshift galaxy (z=10.6) in the constellation of Ursa Major
- Most distant known galaxy until 2022 (when JWST discovered JADES-GS-z13-0)
- Fun fact: Maiolino et al (2024) discovered that GN-z11 contains the most distant (aka earliest) black hole known in the Universe

GN-z11

- $(b, \ell) = (54.8^{\circ}, 126^{\circ})$
- $D = 2.3 \times 10^{22} \text{ GeV/cm}^2$
- 2 observations: 1167s and 1897 s (less than 1h)

Blank-sky flux

 $m_a = 1 \text{ eV}$ $g_{a\gamma\gamma} = 1.1 \times 10^{-11} \text{GeV}^{-1}$

Janish & EP, arXiv:2310.15395, submitted to PRL

Dark matter bounds

Bounds

See Maurizio Giannotti's review

Credit: Ciaran O'Hare

CAST Bounds

Target: Sun \rightarrow Conversion of photons in the Sun into axions due to EM fields (Primakoff effect)

CAST (Cern Axion Solar Telescope) use the reverse process of axion-photon conversion (magnetic telescope): solar axions may be converted into photons inside **B** (9 T)

Dark matter mass range: < 2 eV

CAST Collaboration, JCAP 04 (2007) 010, CAST Collaboration, Nature Phys. 13 (2017)

Stellar cooling due to axions

Globular Clusters: Gravitationally bound systems of stars, among the oldest systems in the MW

Axions could be produced in stellar interiors via the Primakoff process, freely escape and drain energy from its interior

Higher energy losses \rightarrow Contractions \rightarrow Nuclear burning

Higher rate of nuclear burning expedites the stellar evolution

Evolution phases: main sequence (core H burning), red-giant branch (RGB, H burning shell), horizontal branch (HR, core He burning), asymptotic giant branch (AGB, helium-burning shell)

Stellar Evolution Bounds

48 globular clusters observed with the Hubble Space Telescope

 $k_B T_{core} = O(\text{keV}) \Longrightarrow \text{if } m_a \ll k_B T_{core}$, the axion is massless from the star perspective

Dark matter mass range: < 10 keV

Ayala et al, PRL 113 (2014) 191302, Dolan et al, JCAP 10 (2022) 096 Severino et al, APJ 943 (2023) 95

MUSE Bounds

5 dwarf spheroidal galaxies: Leo T, Sculptor, Eridanus 2, Grus 1, Hydra II

MUSE (Multi-Unit Spectroscopic Explorer) at the Very Large Telesocope: wavelength 4800 – 9350 Å, resolution 1.25 Å, observation time 3-22h

Dark matter mass range: 2.7-5.3 eV

Regis et al, Phys. Lett. B 814 (2021) 136075, Todarello et al, arXiv:2307.07403

VIMOS Bounds

Target: Galaxy clusters Abell 2667 and 2390

VIMOS (Visible Multi-Object Spectrograph) at the Very Large Telescope: wavelength 3500 – 7000 Å, resolution 18 Å, exposure time 10.8ks Dark matter mass range: 4.5-7.7 eV

Grin et al, Phys. Rev. D75 (2007) 105018

WINERED Bounds

Target: Dwarf galaxies Leo V and Tucana II

WINERED (Warm Infrared Echelle spectrograph for Realizing Extreme Dispersion) at the Magellan Clay Telescope: 0.9 – 1.35 μ m, R 28,000, exposure time 1hr and 1.2hr

Dark matter mass range: 1.8-2.7 eV

Yin et al, arXiv:2402.07976v1

JWST Bounds: Total Flux

Janish & **EP**, arXiv:2310.15395, submitted to PRL

JWST Bounds: Continuum Model

Janish & **EP**, arXiv:2310.15395, submitted to PRL

Decay lifetime

Bounds on the decay lifetime

Janish & **EP**, arXiv:2310.15395, submitted to PRL

Projections for end-of-mission JWST

MORE IDEAS ON DARK MATTER SEARCHES WITH JWST

Diffuse axion background with JWST

Diffuse Axion Background

Joshua Eby a,b and Volodymyr Takhistov c,d,e,b

^a The Oskar Klein Centre, Department of Physics, Stockholm University, 10691 Stockholm, Sweden ^b Kavli Institute for the Physics and Mathematics of the Universe (WPI), Chiba 277-8583, Japan

^cInternational Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP, WPI), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

^d Theory Center, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

^e Graduate University for Advanced Studies (SOKENDAI),

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Main idea: relativistic axions can be produced in transient sources (e.g. supernovae and mergers of neutron stars) and then decay/convert into photons

Multi-wavelength analysis to probe a wide range of axions masses with present and future telescopes (including JWST)

Dark photon with JWST

Direct Detection of Dark Photon Dark Matter with the James

Webb Space Telescope

Haipeng An,^{1,2,3,4},^{*} Shuailiang Ge,^{3,5},[†] Jia Liu,^{5,3},[‡] and Zhiyao Lu⁵,[§]

An et al, arXiv:2402.17140

Exoplanets as dark matter detectors

Target: Exoplanets (planets outside the solar systems)

Main idea: dark matter can scatter with nucleons in the exoplanets and become gravitationally captured by the exoplanet. The captured dark matter accumulates, annihilates and heats exoplanets.

Exoplanets can be very cold (T \sim 100 K , i.e. infrared)

Low temperatures allows for a clearer signal over background for dark matter heating

5000+ exoplanets discovered (mostly discovered in the past decade)

Estimated 300 billion exoplanets in our Galaxy

Best telescopes: JWST, Roman Telescope, Rubin Telescope/LSST

Leane & Smirnov, arXiv:2010.00015 Acevedo et al, arXiv:2405.02393 Leane & Tong, arXiv:2405.05312

An eye toward the future

More JWST observations

- 900+ targets
- Both NIRSPEC and MIRI
- More statistics & Better targets

Observations with EMIR+

Multi-object medium-resolution spectrograph and wide-field imager

Wavelength: near-infrared (0.9-2.5 μ m)

Location: Roque de los Muchachos Observatory (La Palma, Canary Islands)

Target: Draco/Coma Berenice dwarf galaxy

Data taking expected in September

IAC collaborators: Jorge Terol Calvo, Jorge Camalich, and Francisco Garzon Lopez

Infrared & Optical observations

Infrared observations: Spitzer, KECK, Herschel, ...

Optical observations: HST, VLT, DESI, HETDEX...

Summary & Conclusions

Infrared observations from different targets are a powerful way to probe dark matter

2 With JWST, we derive competitive bounds on eV-scale dark matter

Numerous observations are already available and more data are on their way: This is just the beginning!

3

Summary & Conclusions

Thank you for your attention!

Infrared observations from different targets are a powerful way to probe dark matter

2 With JWST, we derive competitive bounds on eV-scale dark matter

Numerous observations are already available and more data are on their way: This is just the beginning!

3

Back-up slides

NIRSPEC

NIRSpec: Near Infrared Spectrograph

 $\Delta \lambda = 0.6 - 5 \, \mu m$

Three observing modes:

- Low-resolution mode using a prism
- R~1000 multi-object mode
- R~2700 integral field unit

D-factor

$$D(\theta) = \int_{0}^{\infty} ds \, \rho(r(s,\theta))$$

$$\rho(r) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)} \quad \text{NFW profile}$$

 $\rho_s = 0.18 \text{ GeV/cm}^3$

 $r_s = 24 \text{ kpc}$

NIRSPEC

NIRSpec: Near Infrared Spectrograph

 $\Delta \lambda = 0.6 - 5.3 \, \mu m$

Observing mode	Aperture or slit size (arcsec)
MSA spectroscopy	0.20 × 0.46 (individual shutter size in the dispersion direction × spatial direction) ^{††}
IFU spectroscopy	3.0 × 3.0
Fixed slit spectroscopy	0.2 × 3.2 0.4 × 3.65 1.6 × 1.6
Bright object time series	1.6 × 1.6

Disperser-filter combination	Nominal resolving power	Wavelength range (µm)		
G140M/F070LP	~1,000	0.90-1.27		
G140M/F100LP		0.97-1.89		
G235M/F170LP		1.66-3.17		
G395M/F290LP		2.87-5.27		
G140H/F070LP	~2,700	0.95-1.27		
G140H/F100LP		0.97-1.89		
G235H/F170LP		1.66-3.17		
G395H/F290LP		2.87-5.27		
PRISM/CLEAR	~100	0.6-5.3		

https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph/nirspecobserving-modes/nirspec-ifu-spectroscopy#gsc.tab=0

https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph#gsc.tab=0

MIRI

MIRI: Mid-Infrared Instrument

 $\Delta \lambda = 4.9 - 27.9 \, \mu m$

Four observing modes:

- Imaging
- 4QPM coronographic imaging
- Low-resolution slitted and slitless spectroscopy
- Medium-resolution integral field unit spectroscopy

MIRI: Mid-Infrared Instrument

 $\Delta \lambda = 4.9 - 27.9 \ \mu m$

Observing mode	Wavelength coverage (µm)	Field of view or slit size (arcsec)	Pixel scale ("/pixel)	Resolving power R = λ/Δλ	FWHM	Notes
Imaging	5.6 to 25.5 μm	74 × 113	0.11	3.5 - 16.1	2 pix @ 6.25 μm	Subarrays available FWHM = 2 pix × (λ/6.25 μm) for λ > 6.25 μm
4QPM coronagraphic Imaging	10.65, 11.4, 15.5	24 × 24	0.11	14.1 - 17.2	2 pix @ 6.25 μm	
Lyot coronagraphic Imaging	23	30 × 30	0.11	4.1	2 pix @ 6.25 μm	
Low-resolution spectroscopy	5 to 14 µm	0.51 × 4.7 (slit size)	0.11	~100 @ 7.5 μm	2.6 pix @ 7.7 μm	Slit or slitless modes
Medium-resolution spectroscopy	4.9 to 27.9 μm	3.7 to 7.7	0.196- 0.273	~1550-3250	2 pix @ 6.2 μm	FWHM = 0.314" × (λ/10 μm) for λ > 8 μm

https://jwst-docs.stsci.edu/jwst-midinfrared-instrument#gsc.tab=0

Blank-sky flux + dark matter

 $m_a = 1 \text{ eV}$ $g_{a\gamma\gamma} = 1.1 \times 10^{-11} \text{GeV}^{-1}$

Photon emission spectrum

Instrumental response function

$$W(\lambda) = \frac{1}{\sqrt{2\pi\sigma_{\lambda}^2}} e^{-\lambda^2/2\sigma_{\lambda}^2}$$

$$\sigma_{\lambda} = \frac{\Delta \lambda}{2\sqrt{2\ln 2}}$$

Spectral resolution

 $=e^{-\lambda^2/2\sigma_\lambda^2}$ $W(\lambda)$ $2\pi\sigma_{\lambda}^2$

 $\Delta\lambda$ σ_{λ} $2\sqrt{2ln2}$

Doppler effect

$$\frac{df}{dv} = \frac{v}{2v_0^2} \int \frac{f(v)}{v} dv$$

$$f(v) = \frac{4\pi v^2}{(2\pi\sigma_v^2)^{3/2}} e^{-v^2/2\sigma_v^2}$$

 $\sigma_v = 160 \ km/s$

Evans et al, PRD 99 (2019) 023012

