WIMPS, WISPS, and Gammas

Searches for Dark Matter and New Physics with Fermi Large Area Telescope

<u>Milena Crnogorčević (she/her)</u> Postdoctoral Fellow at the Oskar Klein Centre <u>milena.crnogorcevic@fysik.su.se</u>

2nd General Meeting of COST Action Cosmic WISPers

September 4, 2024

Dark Matter Landscape: A Theorist's View

Dark Matter Landscape: An Observer's View

Overwhelming *indirect* evidence for the existence of dark matter

X-ray: NASA/CXC/Ecole Polytechnique Federale de Lausanne, Switzerland/D.Harvey & NASA/CXC/Durham Univ/R.Massey; Optical & Lensing Map: NASA, ESA, D. Harvey (Ecole Polytechnique Federale de Lausanne, Switzerland) and R. Massey (Durham University, UK)

Dark Matter Landscape: An Observer's View

M. Crnogorčević – WISPs, WIMPs, and Gammas – 2nd General Meetin of Cosmic WISPers, Istanbul, September 4, 2024

Dark Matter Landscape: An Instrumentationalist's View

WIMPS

Dark Matter Landscape: An Observer's View

The *Fermi* - LAT

The *Fermi* - LAT

e⁺e⁻ pair-conversion telescope

Energy range*	20 MeV to > 300 GeV
Field of View**	2.4 sr (~1/5 of the whole sky)
Single photon angular resolution***	< 1 deg at 1 GeV
Timing accuracy	1 microsecond

individual γ rays convert into e⁺e⁻ pairs \rightarrow tracks (localization) & deposited energy *ideally suited for WIMP searches
**whole sky every ~3 hours
***point-source localization <0.5 arcmin

... it also detects electrons.

Dark Matter Signal

DM targets

[Conrad & Reimer 2017]

Dwarf Spheroidal Galaxies

[McDaniel+ LAT '24]

Combined dSph Analyses - Comparison

Limits on the parameter space

Trials factor reduces significance to 0.5 σ .

- generally consistent with previous limits; *in tension with the GCE results*

- Can we rule DM out? Not yet.

[McDaniel+'24]

Future of dSph DM searches

How many dwarf galaxies do we *really* need? Maybe just one, but a good one?

Ursa Major III

[Discovery: Smith+ 2023] [J-factor: Errani+ 2023]

- Unstable unless large DM content
- Nearby (~10 kpc)
- Strong constraints on DM annihilation
- Confirming the dark matter density...

BEYOND WIMPs

Observing ALPs with Gamma Rays

In the presence of an external magnetic field, **B**, axion-like particles (ALPs) undergo a conversion into photons:

$$\mathcal{L}_{a\gamma} \supset g_{a\gamma} \mathbf{E} \cdot \mathbf{B} a$$

where $g_{a\gamma}$ is ALP-photon coupling rate, and a is the ALP field strength.

Observing ALPs with Gamma Rays

Primakoff process: converting ALPs into photons

ALP-photon conversion probability map in the MW Fermi B_{MW} Inverse Primakoff Process in the MW B-field

Assumptions: magnetic fields: only considering the MW magnetic field, neglecting IGMF

Motivation: ALPs are theorized to have a unique spectral signature in the prompt gamma-ray emission of CCSN. No other known physical processes are predicted to produce such a signature.

LAT Low Energy Technique (LLE)

- Standard LAT analysis: >100 MeV vs. LLE
- LLE: maximizing the effective area of the LAT instrument in the low-energy regime
- More signal, but also more background

QUESTION 1: HOW SENSITIVE IS LLE TO DETECTING AN ALP BURST?

Reported in: Crnogorčević et al. 2021 (PRD, arXiv:2109.05790)

How sensitive is LLE to detecting ALPs?

Fermi-LLE Sensitivity

LLE can reach up to ~10 Mpc (comparable to the standard LAT analysis)

- Results strongly driven by the dominating background & decreased A_{eff} at high incidences
- Method: signal injection simulations

Crnogorčević et al. 2021 (PRD, <u>arXiv:2109.05790</u>)

GRB searches

24 long GRBs that pass the selection

No excess signal found.

- criteria.
- GRB 101123A at ~2.4 σ . Trials factor $\rightarrow p \sim 0.3$.
- Method: model comparison

GRB Precursors

- No significant detections.
- From the ALP amplitude we calculate upper limits.
- Method: model comparison

Crnogorčević et al. 2021 (PRD, arXiv:2109.05790)

QUESTION 2: HAVE WE ALREADY SEEN ANY ALP EMISSION IN LLE GRBS?

Reported in: Crnogorčević et al. 2021 (PRD, arXiv:2109.05790)

Have we already seen some emission from the GRBs?

Fermi-LLE Sensitivity

- LLE can reach up to ~10 Mpc (comparable to the standard LAT analysis)
- Results strongly driven by the dominating background & decreased A_{eff} at high incidences
 - Method: signal injection simulations

Crnogorčević et al. 2021 (PRD, <u>arXiv:2109.05790</u>)

- No excess signal found.
- 24 long GRBs that pass the selection criteria.
- GRB 101123A at ~2.4 σ. Trials factor → p~0.3.
- Method: model comparison

GRB Precursors

- No significant detections.
- From the ALP amplitude we calculate upper limits.
- Method: model comparison

Crnogorčević et al. 2021 (PRD, arXiv:2109.05790)

Crnogorčević et al. 2023 (under review)

QUESTION 3: WHEN SHOULD WE SEARCH FOR ALPS FROM GRBS?

What about precursor emission?

Fermi-LLE Sensitivity

GRB searches

- LLE can reach up to ~10 Mpc (comparable to the standard LAT analysis)
- Results strongly driven by the dominating background & decreased A_{eff} at high incidences
 - Method: signal injection simulations

• No excess signal found.

- 24 long GRBs that pass the selection criteria.
- GRB 101123A at ~2.4 σ . Trials factor $\rightarrow p \sim 0.3$.

Crnogorčević et al. 2021 (PRD, arXiv:2109.05790)

• Method: model comparison

GRB Precursors

- No significant detections.
- From the ALP amplitude we calculate upper limits.
- Method: model comparison

Crnogorčević et al. 2021 (PRD, <u>arXiv:2109.05790</u>)

Crnogorčević et al. 2023 (under review)

Where next?

Dark Matter Landscape: An Instrumentationalist's View

Future Innovations in Gamma rays

Science Analysis Group

... to explore gamma-ray science priorities, necessary capabilities, new technologies, and theory/modeling needs drawing on the 2020 Decadal <u>to inspire work toward 2040.</u>

Conclusions

- Gamma-ray observations provide unique tests for different dark matter and new physics models
- Indirect detection provides stringent constraints
- Future experiment development is crucial
- Our next space gamma-ray experiment is uncertain---join FIG SAG to make a strong case to funding agencies: <u>https://pcos.gsfc.nasa.gov/sags/figsag.php</u>