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Inflation and the UV

* Naturalness (small inflaton mass):
* Shift symmetries
* Scaling symmetries

« SUSY

* Higher-dimension operators:

eu=vio) (5)' =~ (3F)

* Inflation requires understanding of the UV!

Baumann-McAllister'14
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Goals

* A consistent description of brane-antibrane inflation.

* Issues tackled in the paper:
* Eta problem
* EFT consistency
* Experimental data

* |Late-time vacuum

* Today: eta problem

Dvali, Tye’'99

Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang'01

Dvali, Shafi, Solganik’01

KKLMMT: Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi'03
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Brane-antibrane potential

* Brane positions are described by scalar fields

* The potential perceived by a brane position ¢ caused by an
antibrane is of the form:

VYV, ) = Co (1 ij)

* When the antibrane sits in a warped throat:
—8nK/gs M

V4/3

Co D &

K7 N 7, Naturally flat with O(1) inputs!
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* Naturally stringy
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Brane-antibrane inflation: pros and cons

* Pros

* Naturally stringy
ingredients.

* Order one tuning renders
very flat potentials

 Favoured by observations.

* Plethora of predictions
and stringy features after
inflation.

Kofman, Yi'0O5
Frey, Mazumdar, Myers’'05

* Cons
* Antibrane breaks SUSY.

* Need to stabilize the WISP
by excellence in string
compactifications: the
volume modulus.

» Eta problem.
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WISPS in inflation: the volume

» Life is difficult because generically there is at least one further
scalar: the volume modulus.

* Its potential is generically steep.

* So inflation can never occur far from a minimum of the
potential in the volume direction.

* Need to find this minimum (moduli stabilization).

Kachru, Kallosh, Linde, Trivedi‘03
Balasubramanian, Berglund, Conlon, Quevedo’05
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* The volume receives a correction due to brane backreaction:

V23 = p— gy

* In the original proposal only P is stabilized. Recall: KKLMMT'03

D
V) ~ e (1-22)
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The eta problem

* The volume receives a correction due to brane backreaction:
V23 = p— gy
* In the original proposal only P is stabilized. This implies: kkummT03
1 Dy 1 Dy a
V(V,p) ~ = (1——>~—(1——) 14 2¢p
({p) — &p)? ot ) (p)? o) )

* Which is a large mass term for the inflaton (eta problem)

* Solution: use corrections* that stabilize the whole quantity V.

*For aficionados: perturbative
corrections to the Kahler potential
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Nonlinearly realized SUSY

* The antibrane breaks SUSY but its effects can be
accommodated into an effective SUSY description.

* A description in terms of SUSY variables allows for a
systematic classification of possible corrections.

* We discover a new perfect square structure in the scalar
potential which stabilises the volume.

Komargodski, Seiberg'09
Kallosh, Quevedo, Uranga’15



Scalar potential: ingredients

* The (perturbative) scalar potential in the framework of
nonlinearly realized SUSY is given by 5 ingredients:
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Scalar potential: ingredients

* The (perturbative) scalar potential in the framework of
nonlinearly realized SUSY is given by 5 ingredients:

 Three functions of the volume

f(VQ/S) ,g(V2/3) ,h(VQ/S) Tree level f(CE) — ¥ g(x) O, h(ﬂ?) e

» A (for current purposes) tunable constant W)
- Afunction of ¥ but not } which contains the Coulomb potential 11y



Scalar potential and stabilization

* The most general scalar perturbative potential in the
framework of nonlinearly realized SUSY reads*:

|
V==: [(f’WX — 39 Wo) — " (FW2 — 6gWxWo — 9hwo2)]

» With U a function of f,g,h.

*Neglecting (small) inflaton F-terms



Scalar potential and stabilization

* The most general scalar perturbative potential in the
framework of nonlinearly realized SUSY reads*:

|
V==: [(f’WX — 39 Wo) — " (FW2 — 6gWxWo — 9hwo2)]

« With U a function of f,g,h.
* Tree level reproduces standard uplift.

* Wx=g=0 reproduce standard breaking of no-scale structure
(t" is BBHL)

*Neglecting (small) inflaton F-terms



Scalar potential and stabilization
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* |If the second term is small, perfect square that stabilises (V) at
a Minkowski minimum, uplifted to dS by the second term.

 For ¢' ~1/V%

V) = (WKX)/

gl



Scalar potential and stabilization

V= = |(f'Wx = 3¢'Wo)” — " (W3 =6gWx W5 = 9RIWE)
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* |If the second term is small, perfect square that stabilises (V) at
a Minkowski minimum, uplifted to dS by the second term.

 For ¢' ~1/V%

l/a

Wo

<V> = & 5 4 Controlled SUGRA for small Wx!!
Wx



Brane-antibrane inflation reloaded!

* If g’>>1" (typically BBHL), then the volume is integrated leaving a
Coulomb potential*.

 Brane-antibrane inflation can now occur.

*In the paper we also propose a stabilization
Pap prop
mechanism in the opposite case



Brane-antibrane inflation reloaded!

* If g’>>1" (typically BBHL), then the volume is integrated leaving a
Coulomb potential*.

 Brane-antibrane inflation can now occur.
* After EFT and experimental constraints,

for g~log[V]:

*In the paper we also propose a stabilization
Pap prop
mechanism in the opposite case



Conclusions and future directions

* Perturbative corrections to the Kahler potential allow for brane-
antibrane inflation.

* Nonlinearly realized SUSY uncovers a perfect-square structure in
the scalar potential.

* In this talk, g plays a prominent role. It is a kinetic mixing goldstino-
volume. EFT arguments suggest it's there, the question is at what
power in 1/V.

* We find a parameter space of microscopic data where brane-
antibrane inflation can take place.



Backup: Kahler and superpotential

* Most general* Kahler and superpotentials with constrained
superfields XA2=0:

K = —310g[f(V2/3) - g(VZ/S)(X 4o X} h(Vz/S)XX]
W =W,+ XWx

*Contributions outside of the log can
always be absorbed up to a higher
order correction
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