# **Dark Photon Phenomenology**

### Martti Raidal

NICPB, Tallinn, Estonia

Emidio Gabrielli Kristjan Müürsepp Luca Marzola

### **CosmicWISPers 2024 General Meeting**

September 6, 2024

# **Motivations**

• Theoretical feasibility and constraints

arXiv:2005.01515

- Dark Photon as the oscillating DM
- Non-trivial Dark Sectors, dipole operators, Yukawa couplings
- LHC and FCC signatures:  $H \to \gamma \gamma_D \quad Z \to \gamma \bar{\gamma}$
- Dark Photon explanations to flavour anomalies

Dark Photon (DP) theory and constraints

Lagrangian after diagonalization

$$\mathcal{L}' = \left[\frac{e'\cos\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\sin\theta - \frac{\varepsilon\cos\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A'^{\mu} \\ + \left[-\frac{e'\sin\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\cos\theta + \frac{\varepsilon\sin\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A^{\mu}$$
**Jubroken**  $U(1)_a \times U(1)_b$ 

Freedom to rotate

 $\frac{\text{example}}{\sin \theta = 0}$ 

A' couples to both SM and DS fields A couples only to SM fields  $\mathcal{L}' = \left[\frac{e'}{\sqrt{1-\varepsilon^2}}J'_{\mu} - \frac{e\varepsilon}{\sqrt{1-\varepsilon^2}}J_{\mu}\right]A'^{\mu} + eJ_{\mu}A^{\mu} \cdot \left[\frac{e^{2}}{2}\int_{-\frac{1}{\sqrt{1-\varepsilon^2}}}^{-\frac{1}{2}}J_{\mu}\right]A'^{\mu} + eJ_{\mu}A'^{\mu} \cdot \left[\frac{e^{2}}{2}\int_{-\frac{1}{\sqrt{1-\varepsilon^2}}}^{-\frac{1}{2}}J_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} \cdot \left[\frac{e^{2}}{2}\int_{-\frac{1}{\sqrt{1-\varepsilon^2}}}^{-\frac{1}{2}}J_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} \cdot \left[\frac{e^{2}}{2}\int_{-\frac{1}{\sqrt{1-\varepsilon^2}}}^{-\frac{1}{2}}J_{\mu}A'^{\mu} + eJ_{\mu}A'^{\mu} + eJ_{\mu}A$ 

### **Massless Dark-Photon scenario**

 $\sin\theta = \varepsilon$ 

Dark photon A' couple only to its own Dark Sector

Photon A couples to both SM and E (millicharge)

$$\mathcal{L}' = e' J'_{\mu} A'^{\mu} + \left[ -\frac{e'\varepsilon}{\sqrt{1-\varepsilon^2}} J'_{\mu} + \frac{e}{\sqrt{1-\varepsilon^2}} J_{\mu} \right] A^{\mu}$$

B. Holdom, PLB 166B, 196 (1986)

millicharge

### **Massive Dark Photon scenario** $U(1)_a \times U(1)_b$

1) Stuckelberg mass term

$$\mathcal{L}_{Stu} = -\frac{1}{2}M_a^2 A_{a\mu}A_a^{\mu} - \frac{1}{2}M_b^2 A_{b\mu}A_b^{\mu} - M_a M_b A_{a\mu}A_b^{\mu}$$

2) Mass term via spontaneous symmetry breaking of U(1) (Dark-Higgs)

In both cases, NO freedom of rotation and angle q is fixed to

$$\sin \theta = \frac{\delta \sqrt{1 - \varepsilon^2}}{\sqrt{1 - 2\delta\varepsilon + \delta^2}} \qquad \qquad \delta = M_b/M_a$$

Photon and DP couple to both sectors

$$\mathcal{L}'' = \frac{1}{\sqrt{1 - 2\delta\varepsilon + \delta^2}} \left[ \frac{e'(1 - \delta\varepsilon)}{\sqrt{1 - \varepsilon^2}} J'_{\mu} + \frac{e(\delta - \varepsilon)}{\sqrt{1 - \varepsilon^2}} J_{\mu} \right] A'^{\mu} + \frac{1}{\sqrt{1 - 2\delta\varepsilon + \delta^2}} \left[ eJ_{\mu} - \delta e'J'_{\mu} \right] A^{\mu} .$$

If only one U(1) is broken,  $\delta \to 0 \implies \sin \theta = 0$  and we recover the standard massive DP scenario

$$\mathcal{L} \supset -\frac{e\varepsilon}{\sqrt{1-\varepsilon^2}} J_{\mu} A^{\prime \mu} \simeq -e \varepsilon J_{\mu} A^{\prime \mu}$$

(see previous slide for comparison)
massive DP scenario

### **Summary of tree-level DP interactions**



most of experimental searches focus on massive DP scenario (tree-level couplings)

### Main production mechanisms of (massive) Dark Photons



•Bremsstrahlung
$$e^-Z \rightarrow e^-ZA'$$
 (A1)•Annihilation $e^+ e^- \rightarrow \gamma A'$  (BaBar, KLOE)•Meson decay $M \rightarrow \gamma A'$  (NA48/2) hadrons•Drell Yan $q\bar{q} \rightarrow A'(\rightarrow \ell^+\ell^- \text{ or } h^+h^-)$  (LHCb)  
Via A-A' mixing

### **Detection of massive DP is based on its decay modes**

With visible final states  $m_{A^\prime} > 2 m_e$ Searching for e+e- or m+m- $\Gamma(A' \to \ell^+ \ell^-) = \frac{1}{3} \alpha \, \varepsilon^2 m_{A'} \sqrt{1 - \frac{4m_\ell^2}{m_{A'}^2}} \left(1 + \frac{2m_\ell^2}{m_{A'}^2}\right)$ resonances  $\varepsilon > 10$ **Collider** experiments sensitive to regions DP decay displaced vertex  $\varepsilon < 1$ **Beam dump**  $e^-Z \rightarrow e^-ZA'$  experiments sensitive to regions  $\varepsilon^4$ Detectable rate (visible) proportional to (require high luminosity colliders) long lived DP  $\rightarrow$  require long decay volumes visible Invisible decay Detection relies on missing momentum/energy techniques invisible Being independent on DP decay, rate scales as

Limits on **visible decays** (dilepton resonances)



**Current limits** 

Figure 3.3: Existing limits on the massive dark photon for  $m_{A'} > 1$  MeV from di-lepton searches at experiments at collider/fixed target (A1 [176], LHCb [177], CMS [178], BaBar [179], KLOE [180, 181, 182, 183], and NA48/2 [184]) and old beam dump: E774 [185], E141 [186], E137 [187, 188, 189]),  $\nu$ -Cal [190, 191], and CHARM (from [192]. Bounds from supernovae [193] and  $(g - 2)_e$  [194] are also included.

#### **Massive Dark Photon**

# Limits on **visible decays** (dilepton resonances)



#### **Future prospects**

mainly covers large-masses and large-couplings range

fully complementary to low-mass, low-coupling regime where beam-dump and
 fixed target experiments are more sensitive

#### Limits on massive **DP with mass below MeV**



Figure 3.7: Current limits on massive dark photon for  $m_{A'} < 1$  MeV. Bounds from cosmology (COBE/-FIRES [229, 230, 231, 232]), light through a wall (LSW) [233], CROWS [234], CAST [235], XENON10 [236], SHIPS [237], TEXONO [238], atomic experiments (Coulomb, Rydberg and atomic spectra [239]) and astrophysics: Solar lifetime (SUN-T and SUN-L), red giants (RG), horizontal branches (HB) [240, 241, 214]. Additional limits under the assumption that the dark photon is the dark matter: The curve "Dark Matter" includes the combination of the constraints from the references discussed in the main text.

- Light Dark Photon (mass << MeV), invisible, is very much constrained at tree-level</p>
- Effective loop-induced couplings could dominate at low energy (depending on the DS scale) for invisible DP

Dark Photon as the DM

# The Dark Sector (DS) consists only of DP

• Any classical scalar field with small mass oscillating with

V =  $m^2 \varphi^2$  + small terms

behaves as cold DM

- Axion is an example, but any other scalar with no SM motivation works
- Generalization: any spin 0, 1, 2 bosonic field will give the same result

provided the oscillation freaquency is much faster than cosmic time

DP is a perfect candidate for the DM of the Universe, remains to clarify why we do need it, what is its theoretical motivation

## Non-trivial Dark Sector physics

### massless dark photon

(invisible)



only massive dark-photon can have tree-level couplings with SM fermions via kinetic mixing

Same loop-induced couplings holds also for massive DP

### A simple UV complete benchmark portal model to Dark Sector

- dark-fermion fields (SM singlets replica of SM fermions)
- scalar messenger fields (same quantum N. of squarks & sleptons)
- messengers and dark-fermions both charged under U(1) (dark photon)
- Yukawa-like interactions communicate between DS and SM fermions



### Minimal (new) field content



S<sub>0</sub> needed to preserve at quantum level vanishing tree-level operators for the Yukawa couplings

at 1-loop via messengers

Dark fermions are Dirac (SM singlet) fields
 Messengers have same Quantum N. of squarks and slepton of SUSY models
 Dark-fermions and messenger fields both charged under U(1)<sub>D</sub> (dark)
 trasmitted to SM Yukawa's

Can solve Flavor hierarchy problem

DP interactions in DS  
dynamically generate 
$$M_{Q_i} = \Lambda \exp\left\{-\frac{2\pi}{3\,\bar{\alpha}(\Lambda)q_i^2} + \frac{1}{4}\right\} \implies Y_f \sim M_{Q_f}/\Lambda$$
  
exponentially spread Dark fermion masses

Simplified model with Flavor Universal portal interaction  $\rightarrow$  supported by MFV hypothesis

$$\mathcal{L}_{MS}^{I} = g_{L} \left( \sum_{i=1}^{N_{f}} \left[ \vec{q}_{L}^{i} Q_{R}^{U_{i}} \right] \hat{S}_{L}^{U_{i}} + \sum_{i=1}^{N_{f}} \left[ \vec{q}_{L}^{i} Q_{R}^{D_{i}} \right] \hat{S}_{L}^{D_{i}} \right) \\ + g_{R} \left( \sum_{i=1}^{N_{f}} \left[ \vec{v}_{R}^{i} Q_{L}^{U_{i}} \right] S_{R}^{U_{i}} + \sum_{i=1}^{N_{f}} \left[ \vec{D}_{R}^{i} Q_{L}^{D_{i}} \right] S_{R}^{D_{i}} \right) \\ + \lambda_{S} S_{0} \left( \tilde{H}^{\dagger} S_{L}^{U_{i}} S_{R}^{U_{i}} + H^{\dagger} S_{L}^{D_{i}} S_{R}^{D_{i}} \right) + h.c., \right) + \text{Lepton sector} \\ + \lambda_{S} S_{0} \left( \tilde{H}^{\dagger} S_{L}^{U_{i}} S_{R}^{U_{i}} + H^{\dagger} S_{L}^{D_{i}} S_{R}^{D_{i}} \right) + h.c., \right)$$
Diagram generating D-type Yukawa Y<sub>D</sub>

$$Magnetic-dipole interactions of DP with SM fermions (FCNC and Flavor conserving)$$

$$I405.5196 [hep-ph]$$

$$I_{1405.5196} [hep-ph]$$

$$I_{1405.5196}$$

#### Effective Lagrangian for magnetic-dipole interactions of DP

#### Model independent parametrization

$$\mathcal{L} = \frac{e_D}{2\Lambda_5} \overline{\psi}^i \sigma_{\mu\nu} \left( \mathbb{D}_M^{ij} + i\gamma_5 \mathbb{D}_E^{ij} \right) \psi^j F'^{\mu\nu} \\ SU(2)_L \times U(1)_\gamma \text{ invariant way} \\ \mathcal{L} = \frac{e_D}{2\Lambda_5} \overline{\psi}^i \sigma_{\mu\nu} \left( \mathbb{D}_M^{ij} + i\gamma_5 \mathbb{D}_E^{ij} \right) \psi^j F'^{\mu\nu} \\ SU(2)_L \times U(1)_\gamma \text{ invariant way} \\ \mathcal{L} = \frac{e_D}{2\Lambda^2} \overline{\psi}_L^i \sigma_{\mu\nu} \left( \mathbb{D}_M^{ij} + i\gamma_5 \mathbb{D}_E^{ij} \right) H\psi_R^j F'^{\mu\nu} + \text{H.c.}$$

- This is the leading coupling of massless DP to SM fermions (lowest dim. operator)
- This effective coupling is also present in massive DP scenarios
- 1) might dominate with respect to tree-level mixing (for light dark photons)
- 2) different production mechanisms respect to tree-level mixing

#### massless dark photon



BBN<sup>•</sup> Big bang nucleosynthesis. A cosmological bound for the dark photon operator comes from the determination of the effective number of relativistic species in addition to those of the SM partaking in the thermal bath—the same way the number of neutrinos is constrained.

SN • Supernovae. An additional limit is found from the neutrino signal of supernova 1987A, for which the length of the burst constrains anomalous energy losses in the explosion.

Collider signatures, LHC and FCC

$$H o \gamma \gamma_D$$

Both massless and massive (invisible) DP give rise to same signature:
 resonant mono-chromatic photon + transverse missing energy (neutrino like)

If observed at LHC this signature cannot arise (mainly) from SM fermion loops
 via e-mixing



For the massless case, there is no tree-level couplings  $\rightarrow$  so it is vanishing

For the massive case, via mixing is suppressed  $\rightarrow BR \sim \varepsilon^2 \times BR(H \rightarrow \gamma \gamma)$  $\rightarrow$  outside the sensitivity range of any present and future experiment (e < 10^(-3))

However, it can proceed via UV new heavy physics running in the loop (next slide)

• The discovery of  $H \to \gamma \gamma_D$  signal would be a direct observation of long-range forces in the DS and an indirect evidence of NP coupled to both the SM and DS



Quantum amplitude

$$M_{\gamma\gamma_D} = \frac{1}{\Lambda_{\gamma\gamma_D}} T_{\mu\nu}(k_1, k_2) \varepsilon_1^{\mu}(k_1) \varepsilon_2^{\nu}(k_2)$$
$$\Gamma(H \to \gamma\gamma_D) = \frac{m_H^3}{32 \pi \Lambda_{\gamma\gamma_D}^2}$$

Non-decoupling behavior (at fixed x) for messenger masses  $\bar{m} \to \infty$ 

$$\Lambda_{\gamma\gamma_D} = \frac{6\pi v}{R\sqrt{\alpha\alpha_D}} \frac{1-\xi^2}{\xi^2}$$

*V* is the SM Higgs vev

$$0 \leq \xi \leq 1$$
  $\longrightarrow$  Th. upper bound



Messengers contribute also to  $~H~
ightarrow~\gamma\gamma$  and  $~H~
ightarrow~\gamma_D\gamma_D$ 

Same structure of amplitude as for photon-DP but with a different scale L



$$H \rightarrow \gamma_D \gamma_D$$

$$\downarrow$$

$$\gamma_D \gamma_D = \Lambda_{\gamma \gamma_D} \sqrt{\frac{\alpha}{\alpha_D}} \frac{R}{R_1}$$

 $R_0$  and  $R_1$  contain products of U(1) charges

$$R_0 = 3N_c (e_U^2 + e_D^2) \qquad \qquad R_1 = N_c \sum_{i=1}^3 (q_{U_i}^2 + q_{D_i}^2)$$

Λ

### **DP** production mechanisms via $H\gamma\gamma_D$ effective vertex



#### Model independent parametrization of BRs

$$\begin{split} & \mathrm{BR}_{\gamma\gamma_{D}} = \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{r_{\gamma\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ & \mathrm{BR}_{\gamma_{D}\gamma_{D}} = \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{r_{\gamma_{D}\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ & \mathrm{BR}_{\gamma\gamma} = \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^{2}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ & \mathrm{BR}_{\gamma\gamma} = \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^{2}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ & \chi = \pm 1 \quad \text{parametrizes relative sign of SM vs NP amplitudes} \quad \text{matrixes} \\ & \sigma_{gg \to H} = \sigma_{gg \to H}^{SM} \left(1 - \chi\sqrt{r_{gg}}\right)^{2} \\ & R_{\gamma\gamma} = \frac{\sigma_{gg \to H}^{\mathrm{SM}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}{\sigma_{gg \to H}^{\mathrm{SM}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}} \quad \Longrightarrow R_{\gamma\gamma} = \frac{\mathrm{BR}_{\gamma\gamma}}{\mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}} \left(1 - \chi\sqrt{r_{gg}}\right)^{2} \\ \end{split}$$

#### **BR predictions in a simplified model (1 messenger)**



Allowed regions of **BR**, consistent with all model parameters and LHC constraints, for minimal model, naturally lie below 1%

Inspired by Flavor model (radiative Yukawa)



Allowed regions of **BR**, consistent with all model parameters and LHC constraints, naturally lie **below 0.4 %** (EW mess.) and **0.3 %** (colored mess.)

#### **FUTURE PERSPECTIVES @ LHC and future hadron colliders**

2206.05297

| $BR_{\gamma\gamma_D}(\%)$ | $3~\mathrm{ab^{-1}@14~TeV}$ |           | $15 \text{ ab}^{-1}$ @27 TeV |           |
|---------------------------|-----------------------------|-----------|------------------------------|-----------|
| significance              | $2\sigma$                   | $5\sigma$ | $2\sigma$                    | $5\sigma$ |
| CMS inspired              | 0.012                       | 0.030     | 0.0052                       | 0.013     |

Dark-U(1) charge

$$\mathcal{L} = \sum_{f} \frac{e_D}{2\Lambda} \bar{\psi}_f \sigma_{\mu\nu} \left( d_M^f + i\gamma_5 d_E^f \right) \psi_f B^{\mu\nu}$$

$$\operatorname{BR}(Z \to \gamma \bar{\gamma}) \simeq \frac{2.52 \ \alpha_D}{(\Lambda/\mathrm{TeV})^2} \ (|d_M|^2 + |d_E|^2) \times 10^{-8}$$

LEP upper bound of 
$$BR(Z \to \gamma \bar{\gamma}) \simeq 10^{-6}$$
.

M. Acciarri *et al.* [L3 Collaboration], Phys. Lett. B **412**, 201 (1997); O. Adriani *et al.* [L3 Collaboration], Phys. Lett. B **297**, 469 (1992); P. Abreu *et al.* [DELPHI Collaboration], Z. Phys. C **74**, 577 (1997); R. Akers *et al.* [OPAL Collaboration], Z. Phys. C **65**, 47 (1995).

10<sup>13</sup> of Z boson events at the FCC-ee expected  $10^2$ – $10^4$  of  $Z \rightarrow \gamma \bar{\gamma}$  events

 $d_M \simeq 1/2$  $\rightarrow$  large but perturbative couplings in DS  $10^{-9}$  $lpha_D 
ightarrow$  0.1  $\Lambda 
ightarrow$  1 TeV  $4 \times 10^{-11}$  $d_M \simeq 0.1$  $\rightarrow$  small couplings in DS  $10^{-6} \rightarrow \text{for non-perturbative}$ dynamics in DS



transverse invariant mass simplifies here

 $M_T = 2p_T^{\gamma}$ 

#### upper limits on BR at 95% C.L.

|        |                  |               | $BR(Z \to \gamma \bar{\gamma})$ |                     |  |
|--------|------------------|---------------|---------------------------------|---------------------|--|
|        | $\sqrt{s}$       | $L (ab^{-1})$ | $M_T$                           | $E_{\gamma}$        |  |
| LHC    | $13 { m TeV}$    | 0.14          | $8 \times 10^{-6}$              | $5\times 10^{-5}$   |  |
| HL-LHC | $13 { m TeV}$    | 3             | $2 \times 10^{-6}$              | $1\times 10^{-5}$   |  |
| FCC-ee | $91.2~{\rm GeV}$ | 150           | $2 \times 10^{-11}$             | $3 \times 10^{-11}$ |  |
| CEPC   | $91.2~{\rm GeV}$ | 16            | $7 \times 10^{-11}$             | $8 \times 10^{-11}$ |  |

Spin analysis: possibility to disentangle spin-0 from spin-1

Dark Photon and flavour anomalies

# Belle II has observed an anomaly in $B^+ \rightarrow K^+ \nu \bar{\nu}$

• Proceeds via  $b \to s \nu \bar{\nu}$  and is one of the golden channels

BR
$$(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (4.29 \pm 0.23) \times 10^{-6}$$
,

• Belle II result is claimed to be  $3.5\sigma$  away

BR
$$(B^+ \to K^+ \nu \bar{\nu})_{exp} = (2.3 \pm 0.7) \times 10^{-5}$$
,

• Did Belle observe Dark Photon induced process?

$$B^+ \rightarrow K^+ Q_i \bar{Q}_i$$

### **Assume massless Dark Photon**

Interactions

$$egin{split} \mathcal{L}_{eff} &= rac{1}{2\Lambda} \left[ ar{s} \sigma_{\mu
u} b 
ight] F_D^{\mu
u} + h.c. \,, \quad \mathcal{L}_{dark} = e_D \sum_i q_i \left[ ar{Q}_i \gamma_\mu Q_i 
ight] A_D^\mu \,, \ &\mathcal{M} &= rac{-ie_D}{\Lambda} \langle K | [ar{s} \sigma_{\mu
u} b] | B 
angle rac{q^
u}{s} \left[ ar{Q} \gamma^\mu Q 
ight] \,, \end{split}$$

- We compute the dark magnetic dipole contribution and Sommerfeld
- Need to consider other  $\,b\,
  ightarrow\,s\gamma_D$  transitions
- $B^+ \to K^+ \gamma_D$  is forbidden. Prediction:  $B^0 \to K^* \gamma_D$  must be there

$$\mathrm{BR}(B^0 \to K^* \gamma_D) = 2.47 \times 10^{-5} \left(\frac{10^5 \mathrm{TeV}}{\Lambda}\right)^2$$

### New physics contribution can be large

 $\Lambda = 9.56 \times 10^4 \text{ TeV}, \ N_Q = 3$ 



### Fits to data: the scenario is falsifiable



Future measurements can determine the needed parameter spave to explain the anomaly

# Conclusions

- DP + DS = rich phenomenology
- Two distinct classes of DM: massive and massless
- Dedicated experiments look for light massive DP
- Colliders like LHC, FCC provide new promising channels:  $H \rightarrow \gamma \gamma_D$
- DP may play significant role in explaining the SM Yukawa couplings
- DP may explain some recent flavour anomalies
- However, no positive signals yet, continue working