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• Why Modified Gravity? 

There are several reasons to investigate modified gravity theories. These are theories 
which modify Einstein theory, but reduce to Einstein relativity in certain limits

Modified Gravity could account for the observed accelerated expansion of the Universe today. 

Modified Gravity allows one to test General Relativity in new regimes one hadn’t originally thought of.



Cosmic Microwave Background



Dark Energy

The Universe is undergoing 
accelerated expansion today. 

It could be a cosmological constant 

or the dynamics of a light scalar field

If coupled to gravity this will give rise 
to a fifth force, unless screened



For a scalar field

If the potential dominates then

p� ⇡ �⇢�

so the scalar field plays the role of an effective cosmological 
constant.  Since it’s dynamical, this wouldn’t have been the 
case for all times in the universe. We only need the scalar 
field to dominate the energy density of the universe today

⇢� = 1/2�̇2 + V (�)

p� = 1/2�̇2 � V (�)

kinetic energy + potential energy

kinetic energy - potential energy



Deviations from Newton’s 
Laws parametrised by

tightest constraint from Cassini

Ratra Peebles potential

Fifth Force must be screened



Two general classes of theories

1) Chameleon type screening. Can be tested in the lab, in the solar system, 
astrophysics and cosmology. Does not affect speed of gravitational waves, 

so no test from LIGO/VIRGO or eLISA

2) Vainshtein screening. For example Galileons, Horndeski, massive gravity, k-
mouflage. Vainshtein radius is very large, so no laboratory tests, but 

astrophysical and cosmological tests. Some models give speed of gravitational 
waves to be different from that of photons, so severely constrained by pulsar 
constraints and by LIGO/VIRGO and will be even more constrained by eLISA



The Chameleon Mechanism

consider the action

gives the effective potential

Khoury&Weltman astro-ph/0309411; Brax et al astro-ph/0408415
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V (�) =
⇤4+n

�n

https://arxiv.org/abs/astro-ph/0309411


There is an environmental effect: when coupled to matter the 
potential depends on the ambient matter density as well



mass is proportional to the second derivative of minimum of the potential
Hence it can be heavy when    is large and light when    is small



To screen fifth forces in the solar system one needs the thin shell effect.

dR

R F� ⇡ �R

R�N

The fifth force is 
proportional to the size of 
the thin shell where the 

field varies

self-screening parameter given by

↵ = 2

✓
Mpl

M

◆2

and (3.1)

� =
�min(⇢0)M

2Mpl
2 =

1

2

✓
M

Mpl
2

◆n+2
n+1

✓
n⇤4+n

3⌦m,0H
2
0

◆ 1
n+1

, (3.2)

where we have substituted ⇢0 = 3⌦m0Mpl
2
H

2
0 into equation (2.6). ↵ parametrises the

strength of the fifth-force and one has F5/FN = ↵ if the object is fully unscreened; ↵ = 1/3
in f(R) models. � determines how e�cient an object is at screening itself4. In particular, �
determines the screening radius rs via the implicit relation

� = 4⇡G

Z R

rs

r⇢(r) dr. (3.3)

Consider a theory with � = 0 so that rs = R. Increasing � requires one to decrease rs (i.e.
integrate further into the object) to satisfy this relation and therefore more of the object is
unscreened. Theories with large � therefore have a smaller screening radius and are hence
more unscreened. If � is so large that there is no solution then rs = 0 and the object is fully
unscreened. One can show that this happens when � > GM/Rc

2 = �N, where �N is the
surface Newtonian potential [7, 9–11]. A good rule of thumb is then that objects are screened
when � < �N.

One can see then that unscreened objects are those with low Newtonian potentials,
which gives us a classification scheme for the level of self-screening. In particular, table 1
shows the Newtonian potential of commonly used astrophysical probes of chameleon models.
Both the Sun and the Milky Way (being a spiral galaxy) have potentials of order 10�6 and
so � is constrained to lie below this value from the outset by the requirement that they are
self-screening 5.

Object �N

Main-sequence star 10�6

Post-main-sequence star (1–10M�) 10�7–10�8

Spiral Galaxy 10�6

Dwarf Galaxy 10�8

Table 1. The Newtonian potential of useful astrophysical objects.

Dwarf galaxies have low Newtonian potentials due to their slow rotation6, which makes
them perfect laboratories for testing chameleon theories. This has motivated [29] to compile
a screening map of nearby galaxies in the SDSS survey that gives the screening status of

4the f(R) literature often uses fR0 = 2/3� instead of �.
5In principle, one can relax this assumption by requiring the screening to be due to the local group instead.

This is di�cult to calculate and we will see shortly that astrophysical tests place constraints that are stronger
than the requirement for self-screening and so we will assume self-screening from the outset.

6Recall from the virial theorem that GM/r ⇠ v2. Dwarf galaxies have rotational velocities of order 50
km/s.
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FIG. 1: The field profile inside a spherical overdensity embed-
ded in a homogeneous background. The field minimises its
e↵ective potential at a distance rs from the centre. Far from
the overdensity, the field asemptotically aproaches the value
which minimises the e↵ective potential in the background, �0.
The region r > rs is known as the unscreened region and here
the fifth force is O(1). In the region interior to rs the fifth
force is negligible and this region is said to be screened.

The Newtonian potential, in turn, obeys the Poisson
equation

~r
2�N = 4⇡G�⇢(r) + ... (13)

where we have added the ellipses ... = O(Mpl
�2(r�)2)+

1

2
V (�) to remind the reader that, although in the Ein-

stein frame the scalar field does source the Newtonian
potential, we neglect them since the gradient terms are
second order (recall that we have assume that � is small)
and its potential is small by construction. [29]

In the static limit, where the dynamical time scale of
the perturbation is far greater than the time scale on
which the field relaxes to its minimum (this will always
be the case in this work), the equation of motion, eqn.

(5), for � is r2
� = dVe↵/d�. Inserting the perturbation

eqn. (11) into this equation gives
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There are now two limits depending on the amplitude of
the perturbation. In the presence of a small perturbation,
we intuitively expect the field perturbation to be small
|��| ⌧ �. We can then linearise Eq. (14) to give:
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where we have dropped terms proportional to d�/d� as
we have argued earlier that � is only weakly dependent
on �. Furthermore on scales longer than the Compton
wavelength of the scalar R ⌧ 1/m0, the e↵ective mass
term is negligible leaving us with
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In the other limit when the perturbation �⇢ is large, the
field will be able to attain it’s new minimum and so the
perturbation is also large. In typical theories of interest
the field value at the minimum in high density regions
is much less than that low densities and so |��| ⇡ �0.
At distances deep enough in the interior of the pertur-
bation such that the field reaches its new minimum the
derivative of the e↵ective potential vanishes and (see for
example [9])

dV

d�
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Mpl

⇢(r) (17)

so that

~r
2
�� ⇡ 0 (18)

i.e. the field gets trapped inside the new minimum at
some screening radius r < rs. The field profile be-
comes constant if r is decreased further leading to no
fifth forces. We say that the region inside a sphere of
radius rs is screened. In general, rs can be zero (fully
screened), 0 < rs < R (partially screened) or undefined
(unscreened). Unscreened objects will feel the full e↵ect
of the modified gravity, while fully screened objects are
blind to its existence.
Combining these two limits gives an approximation for

�� valid for r ⌧ m
�1

0
:
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0

0 r < rs
, (19)

By noting that the density perturbation �⇢ is related
to the Newtonian potential via the Poisson equation eqn.
(13), this equation for �� can easily be integrated to find
the field profile in terms of the Newtonian potential �N.
For rs > 0, this is
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By noting that the density perturbation �⇢ is related
to the Newtonian potential via the Poisson equation eqn.
(13), this equation for �� can easily be integrated to find
the field profile in terms of the Newtonian potential �N.
For rs > 0, this is





Symmetrons

This has potential

V (�) = V0 +
�

4
�4 � µ2

2
�2

In a dense environment the field is at the origin whilst 
in a sparser one the field is at the minimum of the 
potential with the transition happening at density 

A(�) = 1 +
�?

2�?mPl
�2

and coupling function

⇢⇤

Khoury&Hinterbichler, 1001.4525The symmetron obeys a symmetry-breaking effective potential
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The Runaway DIlaton

In the strong coupling limit of string theory the dilaton has a runaway potential 

V (�) = V0e
�↵�

Gasperini et al, gr-qc/0108016, investigated the runaway dilaton as a 
quintessence field. With Damour, gr-qc/0204094, they realised there 
were equivalence violations when the dilaton coupled to matter 

In the weak coupling limit the dilaton coupling to matter is 
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A(�) = e��

Does this have a screening mechanism? Actually NO. 
You might think it is viable until computing the thin 
shell condition — such a model doesn’t have a thin 
shell so will not pass all solar system tests

 



Environmentally Dependent Dilaton

V (�) = V0e
�↵�

Where the potential is derived from string theory in the 
strong coupling limit. We chose the coupling to matter to be

A(�) = 1 +
A2

2
(�� �?)

2

This keeps the scalar in the strong coupling regime as the Universe 
evolves. See Brax et al 1005.3735 for full details of the cosmological 

behaviour, local constraints and linear perturbation theory

Brax, van de Bruck, ACD& Shaw 1005.3735



Value of the field far away

Newtonian potential at the 
surface of the body. 

A B
Gravity + scalar force

Due to the scalar interaction, within the Compton wavelength of the scalar field, the inertial and 
gravitational masses differ for screened objects:

Massive bodies with differ scalar charges fall 
differently. Hence a violation of the strong 
equivalence principle. 

Interaction rate depending 
on the objects

Screening criterion for compact 
objects



Eot-Wash Experiment

Be-Ti and 
Be-Al test 
masses

For a review see Wagner et al 1207.2442



Why Atom Interferometry?
In a spherical vacuum chamber, radius 10 cm, pressure 10-10 Torr

Atoms are unscreened above black lines  
(dashed = caesium, dotted = lithium)

19CB, Copeland, Hinds. (2015)Burrage 1408.1409, JCAP 03 (15) 042



Atom Interferometry

Probability measured in excited state at output

21



Berkley Experiment
Using an existing set up with an optical cavity, looking 

for a signal on top of the Earth’s magnetic field 
Anomalous acceleration  = 11 ± 24 nm s-2

23
Jaffe, Haslinger, Xu, Hamilton, Upadhye, Elder, Khoury, Müller. (2017) 

Elder, Khoury, Haslinger, Jaffe, Müller, Hamilton. (2016)

Sphere radius = .95cm 
distance to interferometer = .88cm 
apparatus embedded in cylinder of 

R=6.1cm 



force between parallel plates

force between a plate and a sphere

chameleonic force 

dark energy scale is

The scalar force could be detected in Casimir type experiments

Brax et al PRD76(07)124034

Fcas ⇡ d�4

Casimir Force Experiments



2

nance frequency !r of the mechanical oscillator (without
anything moving at !r) a heterodyne technique was used.
The test mass was harmonically positioned over the two
sides of the source mass at !1 while the separation be-
tween the test and source masses was harmonically varied
with amplitude �z at !2 = !r � !1, e↵ectively reducing
the hypothetical Yukawa-like signal by �z/� ⇠ 0.02. (ii)
The sample was made in such a way that the thicknesses
of the two sides of the source mass were unintentionally
di↵erent. This translated into a ⇠ 3 fN systematic signal
identified with the distance dependence of the Casimir
force. This residual signal yielded the limits obtained in
Ref. [13].

In this paper we report a new approach to improve the
limits in the {�,↵} phase space. The use of a rotating
source mass allowed us to fully utilize the high force sen-
sitivity provided by the large mechanical quality of the
microelectromechanical torsional oscillator (MTO)[14].
Furthermore, an implementation of the source mass
where there is no correlation between its thickness and its
angular position yielded an unprecedented level of sub-
traction of the background arising from vacuum fluctua-
tions.

The test mass (a R = 149.3± 0.2 µm sapphire sphere
covered with a tCr ⇠ 10 nm layer of Cr and a tAu ⇠
250 nm Au-film) was glued close to the edge (at a distance
b = 235± 4 µm from the axis of rotation) of the 500 µm
⇥ 500 µm plate of the oscillator. Gluing the sphere re-
duced the MTO’s natural frequency of oscillation from
f0 = 708.23 ± 0.05 Hz to fr = 307.34 ± 0.05 Hz, and
it reduced the oscillator’s quality factor from Q ⇠ 9000
to Q ' 7200 for a pressure P  10�5 torr. The experi-
ments were performed at P ' 10�5 torr and the motion
of the plate was detected by the change in capacitance
between the plate and the underlying electrodes as in
[13, 17, 18]. Calibration of the MTO was performed by
using the electrostatic interaction between the Au-coated
test and source masses [17]. The calibration was per-
formed with the source mass stationary, and the distance
was monitored and measured using a two-color interfer-
ometer (with a sensitivity of 0.2 nm). After perform-
ing the calibration, the potential di↵erence between the
sphere and plate was adjusted to minimize the electro-
static interaction. With this MTO a thermally limited
minimum detectable force Fmin(fr) ⇠ 6 fN/

p
Hz was cal-

culated when working at resonance at 300 K[16]. Since fr
is a function of separation due to the non-linear nature of
the Casimir interaction, it was continuously monitored.

A five axis stepper-motor-driven positioner and a three
axis piezoelectrically driven system were used to bring
the test mass in close proximity (z 2 [200, 1000] nm)
to the source mass. The source mass was fabricated
by depositing a dCr = 10 nm thick layer of Cr on a
1 inch diameter 100 µm thick [100] oriented Si wafer. A
dtm = 2.10± 0.02 µm thick layer of Si was deposited on
top of the Cr covered Si wafer. Using conventional pho-

tolithography, a photoresist structure consisting of con-
centric sectors was defined in the Si. The Si not cov-
ered by the photoresist was removed down to the Cr
layer using CF4 reactive ion etching. After removing
the photoresist, Au was thermally evaporated and the
structure mechanically polished to expose the Si sectors.
This process defined a structure with a surface consist-
ing of a center circle of Au with a radius R1 = 4 mm,
then a 200 µm wide ring with 50 sectors of Au/Si, and
a 150 µm wide Au ring. The sequence of 200 µm wide
rings with Au/Si sectors and 150 µm wide Au rings was
repeated with the number of Au/Si sectors increasing
by 25 for each concentric ring until the last one with
300 sectors, which was located at R11 = 7.5 mm. This
structure was glued with NOA61 UV curing cement to
a BK7 Schott glass flat with the original Si wafer ex-
posed. The wafer was etched away using KOH, and then
a dAu = 150±3 nm layer of Au was deposited by thermal
evaporation. The exposed Au surface was characterized
by white light interferometry (WLI) and atomic force
microscopy (AFM), which showed an optical quality film
with no memory of the underlying structure. The 1024 ⇥
1024 AFM images obtained over di↵erent 10 µm ⇥10 µm
regions yielded position-independent 60 nm peak-to-peak
topographic roughness. Excluding a few isolated spikes
⇠ 50 nm tall and about 100 nm across, the sample has
a rms roughness of 1.5 nm. The disk was then mounted
on an air bearing spindle. It was optically verified that
the center of the disk and the axis of rotation of the spin-
dle coincided to better than �r ⇠ 10 µm. The flatness
and alignment of the sample were checked in-situ using a
fiber interferometer (response time 10 ms). It was found

Generation 1

z yo
r T

Generation 2

z y

I

x cl
FIG. 1. (Color online) Schematic of the experimental setup
(not to scale). The Au-coated sphere is glued to the oscilla-
tor. Three regions with n = 5, 8, 11 Au-Si sectors are shown.
The actual sample has n = 50, 75, · · · , 300. The {x, y} plane
defines the plane of rotation of the spindle. cl is the line
where all the di↵erent regions with Au-Si sectors coincide. ✓
is the instantaneous axis of rotation, � = !t is the angle of
rotation. The distance z is measured from the vertex of the
spherical test mass to the source mass. r is the distance from
the vertex of the test mass to the center of the source mass, o.
Displacements �r between o and the axis of rotation are not
shown for clarity. For comparison, a schematic of the setup
used in [13] is shown.

Decca Experiment —
1410.7267; 1509.05349



Forecasts for an upcoming Casimir 
sphere/plate force sensor

R = 150 µm
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Dnear = 15 µm
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Dfar = 65 µm
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Figure 3: Prospective bounds on the parameters for an n = 1 chameleon (left) vs. combined

constraints from various experiments.
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designed for both the force sensor and source masses to overcome 
the problem of double suppression. The geometries of the force 
sensor and the source masses are carefully optimized to maximize 
the produced ‘fifth force’ by employing numerical simulations (see 
Methods and Extended Data Figs. 1 and 2 for details). Moreover, we 
manage to generate a long-time coherent ‘fifth force’ (see Methods 
and Extended Data Fig. 3 for details), which can considerably 
improve the force detectability.

Figure 1a shows a schematic of our experiment. Eight thin films 
of polyimide, spaced equally on a rotating plate, are used as the 
source masses to generate a periodic chameleon field. The field then 
penetrates the vacuum chamber via the thin window and exerts a 
‘fifth force’ of frequency ωdri/2π on the force sensor suspended inside 
the chamber. The frequency ωdri/2π is eight times the frequency of 
the plate. The force sensor consists of a thin film of polyimide at 
the top, supported by a glass rod and a piece of pyrolytic graphite 
at the bottom. The pyrolytic graphite works as a supporter and is 
levitated in the magneto-gravitational trap via diamagnetic force 
(Supplementary Fig. 4). The thin film is used as a test mass, which is 
the part of the force sensor that can effectively feel the periodic ‘fifth 
force’. This is because the ‘fifth force’ below the thin film is screened 
by a magnetic shielding box that encloses the pyrolytic graphite. To 
enhance the detectability of the ‘fifth force’, we choose thin films 
with a large surface area and optimize their thickness as 12.5 μm, 
which is comparable to the Compton wavelength of the chameleon 
in the parameter space of interest. We take a glass rod long enough 

that the thin film is placed close to the source mass. In practical 
measurements, we set the frequency of the ‘fifth force’ ωdri/2π at the 
resonance frequency ω0/2π of the force sensor along the z direc-
tion. The motion of the force sensor is monitored optically17 (Fig. 
1a, inset). Finally, the magneto-gravitational trap is placed on a 
vibration-free stage in vacuum.

In addition to the chameleon ‘fifth force’, in practice, however, 
the detected forces may contain background contributions, such as 
magnetic or electrostatic forces, as well as the Newtonian gravity of 
the source masses. Therefore, to achieve a clean test of the chame-
leon field, it is important to mitigate these effects effectively. For the 
magnetic forces, we use a magnet shielding box that encloses the 
magneto-gravitational trap as well as the pyrolytic graphite. Only 
a small hole is left at the top, which allows the test mass to get out 
of the shielding box (Fig. 1b). We find that such a scheme works 
very well for suppressing the magnetic forces in our experiments 
(Supplementary Information and Supplementary Table 1). To shield 
from electrostatic forces, the vacuum chamber itself, indeed, is an 
ideal Faraday shielding cage, thanks to the design that the source 
masses on the rotating plate are separated outside the chamber 
(Supplementary Information and Supplementary Fig. 5). However, 
the chamber walls also hinder the ‘fifth force’ from passing through 
and acting on the test mass. Therefore, to mitigate this effect, there is a 
metallized low-strain silicon nitride window as thin as 0.5 μm, imme-
diately below the source masses at the top of the chamber (Fig. 1b).  
Finally, the thickness of the thin films used as the source masses 
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Fig. 1 | Schematic of experiment. a, The ‘fifth force’ of the chameleon field is generated by eight thin films (source masses) of polyimide with thickness of 
75!μm, spaced equally on a rotating plate. The force sensor consists of a piece of pyrolytic graphite, diamagnetically levitated in a magneto-gravitational 
trap and a 12.5-μm-thick film (test mass) of the same material as the source masses at the top supported by a glass rod. The magneto-gravitational trap is 
placed in a vacuum chamber with seismic noise isolation. The distance between the test mass and the source masses is 390!μm. The rotation of the source 
masses and the motion of the force sensor are monitored by optical systems, with the optical signals being detected by photodiode 1 and photodiode 2, 
respectively. The inset shows a schematic of the detection of the displacement of the force sensor. b, The rotating source masses generate a periodic ‘fifth 
force’ Fcham acting on the test mass. A thin electrical shielding window with thickness of 0.5!μm and a magnetic shield are used to screen the background 
electrostatic and magnetic forces. c, The field ϕ along the central z axis at two different rotation phases. The red and blue curves indicate the cases with 
and without a film of source mass above the test mass, respectively. The schematic is not to scale but for visibility.
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The scalar can couple to photons via 
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Bekenstein showed the most general coupling to matter contained a conformal and disformal term
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the disformal term gives a natural coupling to photons 

note the scalar coupling to photons; different from the axion coupling



12

(a) (b)

FIG. 1: Combined constraints on chameleon parameter space, with the chameleon self-coupling

parameter ⇤ set to the dark energy scale ⇤DE = 2.4 meV (left) and to ⇤ = µeV (right).

into photons occurs too quickly to be observed. The constraints in Fig. 1a are taken directly

from the most recent publication [15]. This paper did not report constraints at the ⇤ = µeV

scale, although some constraints are expected to still apply within the appropriate regime of

parameter space in which the above-mentioned criteria are satisfied. The constrained region

in Fig. 1b is the region in which conditions (i) - (iii) are satisfied, and where the photon

coupling is M� > 2⇥10�12MPl [31]. A more detailed analysis, of the sort done in [15], would

likely exclude a slightly larger region of parameter space, but is beyond the scope of the

present work.

B. CAST

The CERN Axion Solar Telescope (CAST) is sensitive to chameleons produced in the

Sun. Strong electromagnetic fields in the Sun produce chameleons via the electromagnetic

coupling, which then propagate inside the CAST detector, which has a strong magnetic

field to convert the chameleon particles back into photons which are then measured by

the detector. Like the GammeV experiment, this relies on a balance of di↵erent behaviors:

the chameleons must be too heavy to be produced in the core of the Sun (otherwise they

would cause stars to cool too quickly) yet also be light enough to be produced in the Sun’s

chameleon photon coupling
from Elder &Sakstein 2305.15638



Discussion

• We presented scalar-tensor models with screening, in particular the chameleon model 

• Discussed laboratory tests 

• Constraints on the matter coupling  

• Introduced the coupling to photons  

• Constraints on the photon coupling 

• What about production from the Sun —                                                                                          see Tom O’Shea ( 2406.01691 ) ; Luca Visinelli 2103.15834                   

https://arxiv.org/abs/2406.01691

