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To calculate any experimental signal of dark matter we need to know

1. How much dark matter there is around the Earth, p

2. How fast it's moving, v
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Wave-like dark matter:
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For wave-like DM detected via oscillatory signatures, the signal/noise is
enhanced by higher densities and narrower speed distributions
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The usual assumption: the Standard Halo Model (SHM)

* Infinite isothermal sphere = Simplest halo
model that gives a flat asymptotic rotation

curve: v.. (R) — const

CIrc
e \We observe it after a boost into our frame

of reference by v, ® V...

@R = 8 kpc:
Width of velocity

distribution ODM = 0.3 GeV Cm_3

0, = vcirc./ \/5

Vcire — 220 km S_1
Vese = 544 km s~
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— Lack of data is no longer the issue.
Fundamental problem is modelling,
disequilibrium, and systematics in
baryonic density model
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Why care about the value of the dark matter density?
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What is the distribution of axions in galaxies?

Will it be like vanilla ACDM halos?
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What is the distribution of axions in galaxies?

Will it be like vanilla ACDM halos?

Pre-inflationary axion: probably, yes.

Post-inflationary axion: NO
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Axion field, 0 = a/ f,

Post-inflationary axions: the misalignment mechanism

Initial angle @;

M_

Time

Axion is the phase of a complex scalar field
governed by a tilted potential.
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Axion is the phase of a complex scalar field

governed by a tilted potential.
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Post-inflationary axions: the misalignment mechanism

Axion field, 0 = a/ f,

— — M’ Axion is the phase of a complex scalar field
Initial angle @, governed by a tilted potential.

0,
) +3HO+m?0 =0

~ Axion field rolls down to minimum and

starts damped oscillations
— cold dark matter with predictable
abundance:

e E— Ouh? o 02



But there's a complication: V@

Different causal patches take on

different initial angles
w — Field gradients!

String Wall  String

= Domain walls

= Cosmic strings from

axion field winding between true/false

around 27 -20.Y, vacuum (Oand x



What do we need to do? = simulate
(in a nutshell)
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For more comprehensive accounts see, e.g.: Gorghetto+[2007.04990], Buschmann+ [2108.05368], Vaquero+ [1809.09241], O'Hare+ [2112.05117]



Gravitational collapse
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Atter focp axion tield torms

quasi-stable solitons that lay
down small-scale perturbations

These eventually form AU—mpc
gravitationally bound clumps of
axions with masses

M e [1071°,107°] M

— axion miniclusters




Miniclusters

Minivoids

Miniclusters contain >80% of the
axions but make up <1% of the
volume

Earth travels through galaxy at about
0.2 mpc per year, so experiments are
much more likely to sample the
minivoids than the miniclusters




Typical “worst case scenario” density
would be inside the minivoids
~10% of large-scale average density

Minivoids are mostly stable by final
simulation time (z~100)
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Implications for haloscopes
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Not the end of the story...

(Results from here quite preliminary)



Not the end of the story...

Miniclusters are susceptible to
tidal disruption by stars

2 2
M .
A (2GML R2
bvrel 3

T

Energy injected into minicluster

Axions with E>Binding energy will
evaporate away — form tidal stream

See e.g., Tinyakov+ [1512.02884],
Kavanagh+ [2011.05377]
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Monte-Carlo miniclusters orbiting
the galaxy, undergoing stellar
encounters that gradually strip
mass away from them
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the galaxy, undergoing stellar
encounters that gradually strip
mass away from them
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Tidal stream formation

M; = 107" My °
My/M; = 97%
—0.6 —0.4 —0.2 0.0 0.2 0.4
£ lpcl

At solar position, most miniclusters are not 100% disrupted.
However, a sizeable amount will turn into ~pc-long tidal streams



Tidal stream formation
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At solar position, most miniclusters are not 100% disrupted.
However, a sizeable amount will turn into ~pc-long tidal streams
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Different populations of miniclusters
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500

1000

Isolated

— About 70% of MCs by number
— Masses M € [1071°, 107 17] M,
— Form from prompt collapse

— Power law density profiles p ~ r
— ~0% are fully disrupted

Merged

— About 30% of MCs by number
— Masses M € [1071%,107] M,
— Form from mergers of MCs

— NFW density profile
— 45% are fully disrupted

—2.71
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Tidally stripped MCs refill the phase space

We measure ppy; on scales ~100 pc

— Must be ~10'* miniclusters in that volume
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axions is enhanced by a factor of ~10°




Tidally stripped MCs refill the phase space

We measure ppy on scales ~100 pc ~

— Must be ~10'* miniclusters in that volume /

After disruption, MCs turn into extendead
~pc-long streams. Volume tilled with \

axions is enhanced by a factor of ~10°

Q: How many streams overlap at a given
position in the box?

Q: How much is the density enhanced
due to the re-filling of phase space



Axion streams at the Solar position

Answer: typically there are O(1000)
tidal streams overlapping a given
position. Vast majority do not
contribute substantially to the
density

Only ~100 streams plotted for clarity
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Axion streams at the Solar position

Only ~100 streams plotted for clarity
|

Answer: typically there are O(1000)
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HaIOSCOpe Sig nal Signal S(w) « discrete FT of timestream
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The axion power spectrum signal -
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will have a distinct Maxwellian T = 106 x 2
lineshape. Frequency resolution 1o} ___ Standard lineshape -
(Maxwellian)

depends on the duration of the
timestream samples that are put
through a discrete Fourier
transtorm in order to calculate that
power spectrum
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HaIOSCOpe Sig nal Signal S(w) « discrete FT of timestream

. . N _1
Frequency resolution = Aw ~ T

The axion power spectrum signal -
y I ! I I I I

will have a distinct Maxwellian Tint = 10° x 22
lineshape. Frequency resolution Lo} ___ Standard lineshape -
(Maxwellian)

depends on the duration of the
timestream samples that are put
through a discrete Fourier
transtorm in order to calculate that
power spectrum




Haloscope signal

Disrupted minicluster streams are

extremely cold (o0 < 1 km/s) and do not -
contribute a significant density -
enhancement. However they become
extremely prominent if lineshape is 08
sufficiently well-resolved (long =
integration times) E%
N
0.2

0.0

Frequency resolution = Aw ~ T/

Signal S(w) « discrete FT of timestream

Int

M,
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Tint = 10° x 2X

Standard lineshape -
(Maxwellian)

New lineshape
(void + streams)




HaIOSCOpe Sig nal Signal S(w) « discrete FT of timestream
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HaIOSCOpe Sig nal Signal S(w) « discrete FT of timestream
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Haloscope signal

Disrupted minicluster streams are

extremely cold (6 < 1 km/s) and do not
contribute a significant density
enhancement. However they become
extremely prominent if lineshape is
sufficiently well-resolved (long
integration times)

Some important observations:

 Streams only enhance the signal by py./pyoiq ~ 7.
but can enhance it by many orders of magnitude
more in the resolved lineshape in certain bins

* Many streams are narrower than daily modulation
in lab motion v ~ 0.47 km/s

 Streams persist in lineshape O(days-years) at a time

S(w) [a.u.]
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Signal S(w) « discrete FT of timestream

Frequency resolution =
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Int
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Standard lineshape -
= (Maxwellian)

New lineshape
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Summary

* Miniclusters, voids and streams are a consequence of the post-inflationary axion dark
matter scenario so cannot be ignored

* [gnoring tidal disruption, the worst-case scenario is that we are in a minivoid which
have only about ~10% of ppy (suppression in g, by a factor of 3)

e Accounting for tidal disruption, phase space at Solar position re-filled by a factor of 6,
to about 70% of pp), (suppression in g, by a factor of 1.2)

e (9(1000-2000) ultra-cold tidal streams present in axion lineshape at any one time that

persist for O(days—years) at a time

ARC CENTRE OF EXCELLENCE FOR

JTER

THE UNIVERSITY OF

SYDNEY




