

Search for Axionlike particles with hyper polarized Xe nuclear magnetic resonance

Presented by Arian Dogan - Helmholtz Institute Mainz- Johannes Gutenberg University Mainz

From the Cosmic Axion Spin Precession Experiment (CASPEr) collaboration

2nd General Meeting Cosmic WISPers 2024, Istanbul

- Measurement principle of CASPEr-Gradient
- How to create a hyperpolarized sample
- Dark matter detection setup
- Dark matter measurement & Analysis
- Results & Conclusion
- Outlook

Contents

Cosmic Axion Spin Precession Experiment (CASPEr)

8	30 orders o	f magnitud	e		+
κeV	G	eV	$M_{ m pl}$	M_{\odot}	Mass
"L	ight" DM	WIMP	Composite DM	Primordial BHs	
Limither	it mal relic				
E	E. G. M. Ferreira et a	al., Astrophys Rev 29, 1	no. 7 (2021)		

Cosmic Axion Spin Precession Experiment (CASPEr)

eV	G	eV	$M_{ m pl}$	M_{\odot}	Mass
"Light"	DM	WIMP	Composite DM	Primordial BHs	

Couplings between Axionlike Particles (ALPs) and Standard Model particles in CASPEr:

Axionlike Particles (ALPs)

- Coupling to nuclear spin \vec{I}
- $H = g_{aNN} \overrightarrow{\nabla} a(t) \cdot \overrightarrow{I}$
- The ALP-gradient $\overrightarrow{\nabla}a$ acts as a pseudo-magnetic field
- g_{aNN} as coupling constant and $a(t) = a_0 \cos(\omega \cdot t)$
- The Compton frequency $\omega = \frac{mc^2}{\hbar}$

5

Axionlike Particles (ALPs)

- Coupling to nuclear spin \vec{I}
- $H = g_{aNN} \overrightarrow{\nabla} a(t) \cdot \overrightarrow{I}$
- The ALP-gradient $\overrightarrow{\nabla}a$ acts as a pseudo-magnetic field
- g_{aNN} as coupling constant and $a(t) = a_0 \cos(\omega \cdot t)$
- The Compton frequency $\omega = \frac{mc^2}{\hbar}$

https://budker.uni-mainz.de/?page_id=7

Axionlike Particles (ALPs)

- Coupling to nuclear spin \vec{I}
- $H = g_{aNN} \overrightarrow{\nabla} a(t) \cdot \overrightarrow{I}$
- The ALP-gradient $\overrightarrow{\nabla}a$ acts as a pseudo-magnetic field
- g_{aNN} as coupling constant and $a(t) = a_0 \cos(\omega \cdot t)$
- The Compton frequency $\omega = \frac{mc^2}{\hbar}$

Measured signal

- $|S(t)| \propto \gamma^2 \rho P$
- γ =gyromagnetic ratio, ρ =spin density, P=polarization

https://budker.uni-mainz.de/?page_id=7

Axionlike Particles (ALPs)

- Coupling to nuclear spin \vec{I}
- $H = g_{aNN} \overrightarrow{\nabla} a(t) \cdot \overrightarrow{I}$
- The ALP-gradient $\overrightarrow{\nabla}a$ acts as a pseudo-magnetic field
- g_{aNN} as coupling constant and $a(t) = a_0 \cos(\omega \cdot t)$
- The Compton frequency $\omega = \frac{mc^2}{\hbar}$

Measured signal

- $|S(t)| \propto \gamma^2 \rho P$
- γ =gyromagnetic ratio, ρ =spin density, P=polarization

https://budker.uni-mainz.de/?page_id=7

Axionlike Particles (ALPs)

- Coupling to nuclear spin \vec{I}
- $H = g_{aNN} \overrightarrow{\nabla} a(t) \cdot \overrightarrow{I}$
- The ALP-gradient ∇a acts as a pseudo-magnetic field
- g_{aNN} as coupling constant and $a(t) = a_0 \cos(\omega \cdot t)$
- The Compton frequency $\omega = \frac{mc^2}{r}$

Measured signal

- $|S(t)| \propto \gamma^2 \rho P$
- γ =gyromagnetic ratio, ρ =spin density, P=polarization

https://budker.uni-mainz.de/?page_id=7

Hyperpolarization of Xenon & polarization determination

Hyperpolarization of Xenon & polarization determination

Measured Polarization

Magnetic shield with a magnetometer: In continuous flow mode 10 %

Hyperpolarization of Xenon & polarization determination

Further advantage of hyperpolarized Xenon:

- Liquid at 160 K
- Long T1 time (~1h)

Long T2 time of (~ 100 s)

ALP detection setup

- Nb superconductor (0.1 T)
- SQUIDS for detecting
- Nuclear spins (thermally polarized methanol/hyper polarized xenon)
- Pickup coils, Excitation coil, Helmholtz coils
- ALP field $a(t) = a_0 \cos(\omega \cdot t)$

ALP detection setup

- Nb superconductor (0.1 T)
- SQUIDS for detecting
- Nuclear spins (thermally polarized methanol/hyper polarized xenon)
- Pickup coils, Excitation coil, Helmholtz coils
- ALP field $a(t) = a_0 \cos(\omega \cdot t)$

CASPEr Mainz B0 Earth velocity

ALP detection setup

- Nb superconductor (0.1 T)
- SQUIDS for detecting lacksquare
- Nuclear spins (thermally polarized methanol/hyper polarized xenon)
- Pickup coils, Excitation coil, Helmholtz coils
- ALP field $a(t) = a_0 \cos(\omega \cdot t)$ \bullet

Decoherent ALPs

c speed of light, u_a Compton frequency of ALPs, v_a velocity of ALPs \cdot

15

Sample and setup characterization:

- $\cdot T_2^*$ time
- $\cdot T_2$ time Carr-Purcell-Meiboom-Gill pulse sequence
- Larmor frequency
- Magnetization

Sample and setup characterization:

- T_2^* time
- T_2 time Carr-Purcell-Meiboom-Gill pulse sequence
- Larmor frequency
- Magnetization

Preliminary plots

Sample and setup characterization:

- T_2^* time
- T_2 time Carr-Purcell-Meiboom-Gill pulse sequence
- Larmor frequency
- Magnetization

Ramp up leading field -> increasing Larmor frequency by 6 Hz

Preliminary plots

Sample and setup characterization:

- T_2^* time
- T_2 time Carr-Purcell-Meiboom-Gill pulse sequence
- Larmor frequency
- Magnetization

100 s of DM search

Ramp up leading field -> increasing Larmor frequency by 6 Hz

Preliminary plots

Power Spectral Density (PSD) <u>100 s of DM search</u>

1) Savitzky-Goaly Filter Removes features with much smaller/wider line width.

2) Matched filter Using information about the expected signal predict the potential ALP signal

Power Spectral Density (PSD) 100 s of DM search

1) Savitzky-Goaly Filter Removes features with much smaller/wider line width.

2) Matched filter Using information about the expected signal predict the potential ALP signal

ALP signal characterization

lineshape, $\omega_{a}^{}, au_{a}^{}$, amplitude

Power Spectral Density (PSD) 100 s of DM search

1) Savitzky-Goaly Filter Removes features with much smaller/wider line width.

2) Matched filter Using information about the expected signal predict the potential ALP signal

Define a treshold

Power Spectral Density (PSD) 100 s of DM search

ALP signal characterization

1) Savitzky-Goaly Filter Removes features with much smaller/wider line width.

2) Matched filter Using information about the expected signal predict the potential ALP signal

Define a treshold

Power Spectral Density (PSD) 100 s of DM search

ALP signal characterization

Further analysis

1) Savitzky-Goaly Filter Removes features with much smaller/wider line width.

2) Matched filter Using information about the expected signal predict the potential ALP signal

Define a treshold

Power Spectral Density (PSD) 100 s of DM search

ALP signal characterization

Results & Conclusion

D.F. Jackson Kimball, arXiv, 2018

Ciaran O`Hare, Axion Limits

Results & Conclusion

D.F. Jackson Kimball, arXiv, 2018

Ciaran O`Hare, Axion Limits

- Low field setup: frequency range KHz MHz
 High field setup: frequency range 600 MHz
 DM search & analysis works for a 240 Hz
 - frequency range

Transfer HP Xe to Low field setup (0.1 T)

-> Will increase sensitivity by 6 orders of magnitude -> As an alternative higher thermally polarized sample

Outlook

Liquify Xenon

Transfer HP Xe to Low field setup (0.1 T)

-> Will increase sensitivity by 6 orders of magnitude -> As an alternative higher thermally polarized sample

Transport of hyperpolarized Xe to the High field setup (14 T) or using other candidates

Outlook

Our Team

Prof. Dr. Dmitry Budker

Dr. Arne Wickenbrock

Dr. Hendrik Bekker

Dr. Younggeun Kim

Dr. Jonathan Agil

Ophir Ruimi

Olympia Maliaka

Julian Walter

Malavika Uni

Arian Dogan

