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Where do we stand?

Credit: LIGO-Virgo-KAGRA

• O1: September 2015 - January 2016

Only the two LIGO detectors were
operating

• O2: November 2016 - August 2017

Virgo joined the network on August 1

• O3a: April 2019 - September 2019

O3b: November 2019 - March 2020
Virgo and the two LIGO detectors were

operating

• O4a: May 2023 - January 2024
The two LIGO detectors were operating;

KAGRA operating for 1 month
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GW detections: summary
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O1+O2+O3 = 90, O4a* = 81, Total = 171

O1 O2 O3a O3b O4a

Credit: LIGO-Virgo-KAGRA CollaborationsLIGO-G2302098-v11

 * O4a entries are preliminary candidates found online.

Credits: LIGO-Virgo-KAGRA Collaborations/Hannah Middleton/OzGrav
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O1: The birth of GW astronomy
O2: The birth of multi-messenger astronomy with GWs
O3: the case of GW190521
O4a: summary

O1: The birth of GW astronomy

GW150914

The observation The model

• Binary Black Holes (BBHs) can form in nature and merge within a Hubble time

• The two BH masses are ∼ 30 M� ⇒ First direct evidences for “heavy” stellar
mass BHs ( > 25 M�)

Abbott et al. 2016, PRL, 116, 061102
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O2: the birth of multi-messenger astronomy with GWs

On August 17, 2017 at 12:41:04 UTC Advanced LIGO and Advanced Virgo made
their first observation of a binary neutron star (BNS) inspiral

• GW170817 swept through the
detectors’ sensitive band for
∼ 100 s (fstart = 24 Hz)

• The signal-to-noise ratio (SNR) is
18.8, 26.4 and 2.0 in the
LIGO-Hanford, LIGO-Livingston
and Virgo data respectively;

the combined SNR is 32.4

⇒ This is the loudest signal among
the ones reported in GW catalogs

Abbott et al., PRL, 119, 161101 (2017)

6 / 21



Introduction
GW and multi-messenger observations

Conclusions

O1: The birth of GW astronomy
O2: The birth of multi-messenger astronomy with GWs
O3: the case of GW190521
O4a: summary

Where did the BNS merger occur?

Luminosity distance:

40+8
−14 Mpc

Sky localization:

- rapid loc., HL: 190 deg2

- rapid loc., HLV: 31 deg2

- final loc.∗, HLV: 28 deg2

Virgo was essential in localizing the source to a single region of the sky

Abbott et al., PRL, 119, 161101 (2017)

∗ More refined analysis allowed to reduce the sky localization to 16 deg2

(Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2019, PRX, 9, 011001)
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Which were the expected EM counterparts?

• Short GRBs:

• Prompt γ-ray emission
(< 2 s).

• Multiwavelegth afterglow
emission: X-ray, optical and radio
(minutes, hours, days, months).

• Kilonova: optical and NIR
(days-weeks).

• Late blast wave emission: radio
(∼ months, years).

BH

θobs

θj
Tidal Tail & Disk Wind

Ejecta−ISM Shock

Merger Ejecta 

v ~ 0.1−0.3 c

Optical (hours−days)

Kilonova
Optical (t ~ 1 day)

Jet−ISM Shock (Afterglow)

GRB
(t ~ 0.1−1 s)

Radio (weeks−years)

Radio (years)

Image credit:
Metzger & Berger, ApJ, 746, 48 (2012)
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What did we observe?

• coincident short GRBs detected in
gamma rays

⇒ first direct evidence that at
least some BNS mergers are
progenitors of short GRBs

• the host galaxy has been
identified: NGC 4993

• an optical/infrared/UV counterpart
has been detected

⇒ first spectroscopic identification
of a kilonova

• An X-ray and a radio counterparts
have been identified

⇒ off-axis afterglow from a
structured jet (Ghirlanda et al.
2019, Mooley et al. 2018)

see Abbott et al., ApJ Letters, 848, 2 (2017) and refs. therein
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GW190521

• GW event observed by the two LIGO
detectors and Virgo

• m1: 85+21
−14 M�, m2: 66+17

−18 M�

• The primary falls in the mass gap by
(pulsational) pair-instability SN

Challenge for stellar evolution

• Isolated binary evolution is disfavoured

• Dynamical scenario? e.g., hierarchical
mergers in an Active Galactic Nucleus
(AGN) disk

Abbott et al. 2020, PRL, 125, 101102

Abbott et al. 2020, ApJL, 900, 13
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GW190521: an EM counterpart?

The Zwicky Transient Facility (ZTF) detected a candidate optical counterpart in AGN
J124942.3+344929

• GW sky localization: 765 deg2

(90% C.R.)

• ZTF observed 48% of the 90%
C.R. of the GW skymap

• An EM flare observed ∼ 34 days
after the GW event

• It is consistent with expectations
for a BBH merger in the accretion
disk of an AGN (see McKernan et
al. 2019, ApJL, 884, 50)

Graham et al. 2020, PRL, 124, 251102
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Common origin of the two transients seems to be preferred with respect to random
coincidence (Morton et al. 2023; see, however, Ashton et al. 2021, Palmese et al.
2021)
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O4a: summary

• ∼ 8 months of data taking

• 81 significant1 detection candidates (92 Total - 11 Retracted)

• Almost all BBHs; no BNS; a couple of possible NS-BH (p >∼ 50%)

- S230529ay https://gracedb.ligo.org/superevents/S230529ay/view/

- S230627c https://gracedb.ligo.org/superevents/S230627c/view/

• No EM counterpart so far

1Significant GW alerts: false alarm rate < 1/month for CBC and 1/year for bursts
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The next GW observing runs

� Commissioning break is
ongoing

� Planned starting date of O4b:
April 3, 2024

� O4b duration: 9 months

Updated observing run plans at https://observing.docs.ligo.org/plan/

• In the future 2nd generation GW detectors will operate with increased sensitivity,
in synergy with current and future EM facilities (e.g. SVOM, CTA, Vera Rubin
Observatory etc) ⇒ increase in the data rates and in the data complexity

• Work is ongoing to develop new tools to make faster and more efficient the
detection of the sources, their localization etc (e.g., Machine Learning)
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The role of Virgo in the sky localization

Credits: G. Greco, N. Arnaud, M. Branchesi, A. Vicere
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The role of Virgo in the sky localization

(Loading Video...)

Credit: L. Singer
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GW-GRB association: constraints on fundamental physics

The observed time delay between GRB 170817A and GW170817 (∼1.7 s) can be used to put
constraints on fundamental physics:

Speed of gravity vs speed of light

∆ν = νGW − νEM

∆ν
νEM

∼ νEM∆t

D

• lower limit on distance: D=26 Mpc

• Time delay: two cases considered

- the EM and GW signals were emitted
simultaneously

- the EM signal was emitted 10 s later

−3 × 10−15 ≤ ∆ν
νEM

≤ 7 × 10−16

Abbott et al. 2017, ApJL, 848, 13
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Implications for cosmology

The association with the host galaxy NGC 4993 and the luminosity distance directly
measured from the GW signal have been used to determine the Hubble constant

• Recession velocity of NGC4993
from spectroscopic measurements:
3017± 166 km s−1

• Distance from GW signal

H0= 70+12
−8 km/s/Mpc

Abbott et al., Nature, 551, 85 (2017)
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GW-NGC4993 association: implications for Cosmology

GW170817 as a standard siren:
the association with the host galaxy NGC 4993 and the luminosity distance directly

measured from the GW signal have been used to determine the Hubble constant

• H0=70.0+12.0
−8.0 km s−1 Mpc−1∗

• H0=67.74±0.46 km s−1 Mpc−1

• H0=73.24±1.74 km s−1 Mpc−1

Abbott et al., Nature, 551, 85 (2017)

∗ More recent estimates, obtained assuming a priori that the GW source is in NGC 4993, are:

- H0=70+13
−7 km s−1 Mpc−1 (high-spin case)

- H0=70+19
−8 km s−1 Mpc−1 (low-spin case)

Abbott et al. 2019, PRX, 9, 011001
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Hubble constant estimate with GWTC-3

BBHs + galaxy catalogs + GW170817: H0 = 68+8
−6 km s−1 Mpc−1

⇒ improvement of ∼ 40 % with respect to the result obtained using only GW170817

Abbott et al. 2023, ApJ, 949, 76
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Dynamical scenarios for GW190521

Hierarchical mergers Stellar mergers in young
star clusters

Active Galactic Nucleus
(AGN) disks
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