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The NA62 Experiment at CERN SPS



The NA62 Data Acquisition and Low Level Trigger



The NA62 Data Acquisition and Low Level Trigger



The NA62 Ring Imaging Cherenkov detector (RICH)



Smart Primitives: FPGA-RICH



Workflow for Neural Networks deployment on FPGA



Neural Network Model (actually one of them...)

• Encoding of the PTMs geometrical 
positions in the input layer.

LUT = 14%

Flip−Flop = 6%

DSP = 7%

BRAM = 3%

on Versal VCK190



Neural Network Sensitivity



ROC Curve, Throughput & Latency
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Integration of the FPGA-RICH Pipeline



Integration of the FPGA-RICH Pipeline



APEIRON: an overview

13

▪ Goal: develop a framework offering hardware and software support for the execution of
real-time dataflow applications on a system composed by interconnected FPGAs .

▪ Map the dataflow graph of the application on the distributed 
FPGA system and offers runtime support for the execution.

▪ Allow users with no (or little) experience in hardware design 
tools, to develop their applications on such distributed 
FPGA-based platforms

– Tasks are implemented in C++ using High Level Synthesis tools 
(Xilinx Vitis).

– Lightweight C++ communication API

• Non-blocking send()

• Blocking receive()

▪ APEIRON is based on Xilinx Vitis High Level Synthesis 
framework and on INFN Communication IP (APE Router)



APEIRON: INFN Communication IP
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▪ INFN is developing the IPs implementing a direct network that 
allows low-latency data transfer between processing tasks 
deployed on the same FPGA (intra-node communication) 
and on different FPGAs (inter-node communication).



APEIRON: the Node
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▪ Host Interface IP: Interface the FPGA logic with the host through the system bus.

– Xilinx XDMA PCIe Gen3

▪ Routing IP: Routing of intra-node and inter-node messages between processing tasks 
on FPGA.

▪ Network IP: Network channels and Application-dependent I/O

– APElink 40 Gbps

– UDP/IP over 10 GbE

▪ Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)

APEIRON node in a 3D Torus network topology

Communication IP



APEIRON: Communication Latency
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Inter-node LATENCY (orange line) < 1us for packet sizes up to 1kB 
(source and destination buffers in BRAM)

Test modes
• Local-loop (red arrow)
• Local-trip (green arrows)
• Round-trip (blue arrows)
Test Configuration
• IP logic clock @ 200 MHz
• 4 intranode ports
• 2 internode ports 
• 256-bit datapath width
• 4 lanes inter-node channels





Data reduction on FPGA



dRICH Data Reduction Stage on FPGA

• Objective: design of a data reduction stage for the dRICH with a ~100 
data bandwidth reduction in DAM-I level output to DAM-II level input.

• Make exclusive use of DAQ components (Felix DAMs)
• Add few DAM units wrt the bare minimum needed to readout the 1248 RDO 

links to implement a distributed processing scheme.
• Integration with the Interaction Tagger to boost performance and enable other 

features.
• Online Signal/Background discrimination using ML

• Collecting datasets using data available from simulation campaigns
• Background: 

• e/p with beam pipe gas 
• Synchrotron radiation (MC only?)

• Merged: signal + e/p with beam pipe gas background (full), few events
• SiPM Noise

• DCR modelled in the reconstruction stage
• Spatial and time dependency of the rate?



dRICH Data Reduction Stage on FPGA

• Online Signal/Background discrimination using ML (continued)
• Study of Inference Models

• Restricting our study to inference models that can be deployed on FPGA 
with reasonable effort (using a High-Level Synthesis workflow)

• MLP, CNN, GNN NN Models (HLS4ML)
• BDT (Conifer)

• Inference throughput (98.5 MHz) is the main concern.
• HDL optimized implementation is an option.

• Deployment on multiple Felix DAMs directly interconnected with the APE 
communication IPs



dRICH Data Reduction Stage on FPGA: example deployment
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Current status and outlook
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• We have started collecting datasets and experimenting with 
inference models.

• Details of the final deployment will be affected by several factors
• Final selection on the inference model(s): BDT, MLP, CNN, GNN, …
• Net amount of FPGA resources available (discounting the “standard” DAQ 

firmware) in DAMs.
• Actual additional DAQ resources (DAMs, …) dedicated to the data 

reduction system. 

• Possible additional features
• Provide services (statistics) for the online monitoring.
• Having track seeds information from the Interaction Tagger could enable 

more sophisticated features
• Particle counting 
• Particle identification

• We have devised a method to tag reconstructed events with PIDs.



Backup Slides
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PID in NA62 with the RICH using NN on FPGA at L0 Trigger
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▪ Goal: for any event detected by the RICH 
provide an estimate for the number charged 
particles and the number of electrons

▪ Streaming readout processing on FPGA using 
Neural Networks for classification (10 MHz).

▪ Produce a new primitives stream for L0TP+

▪ The main challenge is the proc. throughput

TEL62
4x TEL62

8x 1GbE links

FPGA

Primitives from 
other detectors

L0TP+



Design and Implementation Workflow
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QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA resource usage) must be 
taken into account and verified at any stage:
• Generation strategy of training and validation data sets.
• TF/KERAS NN architecture (number and kind of layers) and representation of the input

• Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
• QKeras Serach iteratively the minimal representation size in bits of weights, biases and activations, 

possibly by layer.
• hls4ml Tuning of REUSE FACTOR config param (low values -> low latency, high throughput, high resource 

usage), clock frequency.
• Vivado HLS co-simulation for verification of performance (experimented very good agreement with 

QKeras Model)



NN Architectures: Dense Model
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▪ Input representation: normalized 
hitlist (max 64 hits per event)

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point)

– Weights and biases: 8 bits <8, 1>

– Activations: 16 bits <16, 6>

▪ FPGA resource usage (VCU118) 
LUT 14%, DSP 2%, BRAM 0%

▪ Latency: 22 cycles @ 150MHz

▪ Initiation Interval (II): 8 cycles

▪ Throughput: 18.75 MHz

Layer (type) Output Shape Param #

=================================================================

input1 (InputLayer) [(None, 64)] 0

fc1 (Dense) (None, 64) 4160

act1 (Activation) (None, 64) 0

fc2 (Dense) (None, 16) 1040

act2 (Activation) (None, 16) 0

fc3 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

=================================================================

Total params: 5,268



NN Architectures: Convolutional Model
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▪ Input representation: 16x16 images

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point):

– Weights and biases: 8 bits <8, 1>

– Activations:16 bits <16, 6>

▪ FPGA resource usage (Alveo U200)
LUT 5.2%, FF 1.5%, DSP 4.8%, 
BRAM 0.05%

▪ Latency: 388 cycles @ 220MHz

▪ Initiation Interval (II): 369 cycles

▪ Throughput: 0.6 MHz

Layer (type) Output Shape Param #

=================================================================

input1 (InputLayer) [(None, 16, 16, 1)] 0

conv1 (Conv2D) (None, 16, 16, 8) 80

act1 (Activation) (None, 16, 16, 8) 0

maxp1 (MaxPooling2D) (None, 8, 8, 8) 0

conv2 (Conv2D) (None, 8, 8, 8) 584

act2 (Activation) (None, 8, 8, 8) 0

maxp2 (MaxPooling2D) (None, 4, 4, 8) 0

flatten (Flatten) (None, 128) 0

fc3 (Dense) (None, 16) 2064

act3 (Activation) (None, 16) 0

fc4 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

=================================================================

Total params: 2,796



Convolutional model – Kernel replication
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Resources usage for 12 replicas:
• LUT 74%
• FF 17%
• DSP 61%
• BRAM 1.4%
Processing time @220MHz: 137 ns 
per event
Processing throughput: 7.2 MHz

Throughput is not enough to sustain L0 rate, but we can replicate the network 
multiple times, also on multiple devices if necessary.



Dense Model: results for classification of number of rings
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▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 85.7 Purity 95.6
Class 1 (1 rings) Efficiency 87.7 Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)



Convolutional Model: results for classification of number of rings
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▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 88.6 Purity 94.0
Class 1 (1 rings) Efficiency 89.5 Purity 84.6
Class 2 (2 rings) Efficiency 74.4 Purity 70.5
Class 3 (3+ rings) Efficiency 72.2 Purity 86.1

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)
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