INFN

Istituto Nazionale di Fisica Nucleare

RICH pattern recognition with FPGA:
from NA62 to dRICH

Alessandro Lonardo
(INFN Romal, APE Lab)
for the EIC_NET Romal&ToV team

Giornate Nazionali EIC_NET 2024
27-28 Giugno 2024
Bologna



The NA62 Experiment at CERN SPS

Veto
Photons and Muons

* Measurement of the K* decay:
BR(K*— mvv)

n Identification

* Ultra-rare channel, SM prediction: Hadron Beam
it T |
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* Fixed Target experiment: Total Lenglth 270m
75 GeV secondary hadron beam Y
(6% kaons).

10 MHz event rate
Need highly selective filtering sytem




The NA62 Data Acquisition and Low Level Trigger

Secondary beam: 750 MHz

CHOD

primitives

L0 input: 10 MHz T\ LOTP
LAV12 ﬁ— \ ) I
"“f‘ \* o Mask0
LO output: 1 MHz MUV3 & . ]* _ Mask2
I | —— Mask15
New CHOD ﬁ;“‘ AN SO
L1 output: 100 KHz e e
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* Some detectors send raw data (primitives) to the /

[
To P(.‘:-Furm (L1 )

FPGA-based level-0 trigger processor LOTP
* Primitives are generated from TEL62 read out boards
* LOTP checks conditions (Masks) to determine if an event should be selected and sent to L1

* Masks rely on the physics information inside the primitives (Energy, hit multiplicity, position, ...)




The NA62 Data Acquisition and Low Level Trigger

Secondary beam: 750 MHz primitives e
LO input: 10 MHz H\i\ o [ LOTP
_-—-c* "\%* m— Mask0
LO output: 1 MHz }

R\ L ———————————— Mask1
N\ R - .
New CHOD &v* - AN S
L1 output: 100 KHz TN e

———— ToPC-Farm
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LKr, ...

* Some detectors send raw data (primitives) to the 4
FPGA-based level-0 trigger processor LOTP o pC-rarm (L1)

* Primitives are generated from TEL62 read out boards

* LOTP checks conditions (Masks) to determine if an event should be selected and sent to L1

* Masks rely on the physics information inside the primitives (Energy, hit multiplicity, position, ...)




The NA62 Ring Imaging Cherenkov detector (RICH)

b, 2 x 976 PMTs
\5 Mirror Mosaic (17m focal length)
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During offline data analysis, it provides PID to
distinguish between pions and muons from 15 to
35 GeV

Uses the Cherenkov rings radius and track
momentum

LO primitives contain only number of HIT PMTs
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Mask15

(L1)

primitives
—— To PC-Farm

: FPGA-RICH

IMITIVeS

Smart Pr

hit-PMT IDs

- RICH @

New CHOD

LKr, ...

FPGA-RICH: reconstruct the rings geometry online using

an Al algorithm on FPGA, to generate a refined primitive stream for LOTP selection masks



Workflow for Neural Networks deployment on FPGA

~

N | Keras 32-bit precision model
Tensor
'] Python Libraries to train model
and quantize parameters into
QKeras | low-bit precision Fixed-point representation
model 24 23 22 21 20 2-1 2-2 2-3
4 00010.110
his 4 ml HLS model » High Level Synthesis: high level C++
code transposed to hardware
i | components, using directives to arrange

pipelining, parallelization, memory

e s structures, 1/0, etc.
' Iterate to find compromise between computational

resources, throughput, and NN accuracy
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Neural Network Model (actually one of them...)
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* Encoding of the PTMs geometrical

positions in the input layer.
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RelLU

P
RelLU
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32 16 2
4 3+
Number
of rings
LUT = 14%
Flip—Flop = 6%
DSP = 7%
BRAM = 3%

on Versal VCK190



Neural Network Sensitivity

3.5 M test events

True Number of rings
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ROC Curve, Throughput & Latency

Background Efficiency (False Positive Rate)

NN:

Multi-Class ROC Curve

10° -
] — Keras
------- Qkeras
=== HLS
For QKeras:
e  0Oring(s) area=99.33%)
1 ring(s) area = 96.30%)
10-1 - *  2ringls) area= 92.37%)
] 3+ ring(s) area= 97.45%)
10772 -
1{]_3 I "' 1 I I 1
0.0 0.2 0.4 0.6 0.8

avg Throughput = 21 MHz

Signal Efficiency (True Positive Rate)

Latency = 160 ns

1.0

at 300 MHz clock
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Integration of the FPGA-RICH Pipeline

RICHH ‘ —— 4 x boards
readout

512 PMT per board

i Merged event

NN Kernel

|
primitive

FPGA-RICH

Merging merge by timestamp AMD™

Versal
VCK190

Synchro

primitive
packet

LOTP
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APEIRON: an overview

= Goal: develop a framework offering hardware and software support for the execution of
real-time dataflow applications on a system composed by interconnected FPGAs .

e

= Map the dataflow graph of the application on the distributed
FPGA system and offers runtime support for the execution.

= Allow users with no (or little) experience in hardware design
tools, to develop their applications on such distributed

FPGA-based platforms

— Tasks are implemented in C++ using High Level Synthesis tools l
(Xilinx Vitis).

— Lightweight C++ communication AP|
« Non-blocking send()
« Blocking receive()

= APEIRON is based on Xilinx Vitis High Level Synthesis
framework and on INFN Communication IP (APE Router)

13



APEIRON: INFN Communication IP

= INFN is developing the IPs implementing a direct network that
allows low-latency data transfer between processing tasks
deployed on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication).

HOST Communication IP Communication IP HOST
INTERFACE INTERFACE
-—> Wl
SWITCH w bl ’ \
COMPOMENT g " : ‘
~— = . j O FPGA
['Y ®
L]
I J \
INTRANODE Communication IP HOST
. INTERFACE
1 X
[\

I A
d b FPGA

FPGA




APEIRON: the Node
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: Interface the FPGA logic with the host through the system bus.
— Xilinx XDMA PCle Gen3

: Routing of intra-node and inter-node messages between processing tasks
on FPGA.

= Network IP: Network channels and Application-dependent |/0O
— APElink 40 Gbps
— UDP/IP over 10 GbE
: user defined processing tasks (Xilinx Vitis HLS Kernels)
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APEIRON: Communication Latency

FPGA

HOST
INTERFACE

() >

ROUTIN

GIP

— ]

"g://

NETWORK IP

T

Latency

FPGA

%\
NETWORK |

N

ROUTING IP

Cfg/Sts

HOST
INTERFACE
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—— Roundltrip, DDR + sync I

Roundtrip, BRAM

——— Localloop, DDR + sync
—— Localloop, BRAM
Localtrip, DDR + sync
Localtrip, BRAM

Time (us)

128 256 512

Message size (Byte)

Test modes

* Local-loop (red arrow)

* Local-trip (green arrows)

* Round-trip (blue arrows)
Test Configuration

* |Plogic clock @ 200 MHz

* 4 intranode ports

* 2 internode ports

256-bit datapath width

4 lanes inter-node channels

Inter-node LATENCY (orange line) < 1us for packet sizes up to 1kB
(source and destination buffers in BRAM)
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P. Antonioli
RDO and ePIC DAQ ht‘tpr;:(/);]il:dliCO.bn|.gOV/event/20457/contributions/80658/attac eP_@

hments/49752/85138/20230914-DAQ.pdf

-level DAM (27) ll-level DAM (1)
FELIX FELIX
( (
: ) -
1248 \ 27
e 47 links to PDU e 27 links to I-level DAM
e 1link to ll-level DAM e link from central ePIC [clock/trigger]
1248 — ePIC interaction tagger
ﬂ 27 able to reach our DAMS in 10 pus!
e PDU: 1248

e RDO: 1248 in exp. hall, rack mounted ﬂ 1
e FEB: 4992
PC with 4 FELIX each (77?) E 1

13
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P. Antonioli
RDO and eP|C DAQ httprl:;;‘il:dlico.bnI.gov/event/20457/contributions/80658/attac eP_I&S

hments/49752/85138/20230914-DAQ.pdf
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L [ // .
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e 47 links to PDU e 27 links to I-level DAM
e 1link to ll-level DAM e link from central ePIC [clock/trigger]
1248 —— ePIC interaction tagger
= 27 able to reach our DAMS in 10 ps!
e PDU: 1248 =
e RDO: 1248 in exp. hall, rack mounted
e FEB: 4992
PC with 4 FELIX each (??) E 1
13
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dRICH Data Reduction Stage on FPGA

- Objective: design of a data reduction stage for the dRICH with a ~100
data bandwidth reduction in DAM-I level output to DAM-II level input.

- Make exclusive use of DAQ components (Felix DAMS)
- Add few DAM units wrt the bare minimum needed to readout the 1248 RDO
links to implement a distributed processing scheme.
. ][ntegration with the Interaction Tagger to boost performance and enable other
eatures.

- Online Signal/Background discrimination using ML

- Collecting datasets using data available from simulation campaigns

« Background:

« e/p with beam pipe gas

« Synchrotron radiation (MC only?)
« Merged: signal + e/p with beam pipe gas background (full), few events
« SIPM Noise

 DCR modelled in the reconstruction stage

« Spatial and time dependency of the rate?



dRICH Data Reduction Stage on FPGA

« Online Signal/Background discrimination using ML (continued)

« Study of Inference Models
 Restricting our study to inference models that can be deployed on FPGA
with reasonable effort (using a High-Level Synthesis workflow)
« MLP, CNN, GNN NN Models (HLS4ML)
« BDT (Conifer)
* Inference throughput (98.5 MHz) is the main concern.
« HDL optimized implementation is an option.
* Deployment on multiple Felix DAMs directly interconnected with the APE

communication IPs



dRICH Data Reduction Stage on FPGA: example deployment

GTU DAM-| GTU DAM-I
47 25 Sector 0
1 GTU (..., IT)
DAM-Il - '
100 GbE GTU * Sector5 -
e o T
— ;

100 GbE

)

GTU (trigger to DAM-I)

* 42 links from RDOs
» 6 ports available for
direct comm. between DAMs
» Distributed processing
» Sub-sector level (DAM-I)
» Detector level (DAM-II)
» In each sector, processed data
routed by one DAM-1 to DAM-II

Sector—

RDO Data

Processed Data




dRICH Data Reduction Stage on FPGA: example deployment

A A

To DAM-II

Ko Ko
50k channels
per sector ~ Re'“J .
—— RDO flow , J e
—— PROC flow : 16 x 16-bit
—> GTU I/O = FC3 16
a FC2 64

Input 160 FC1 160

To DAM-II
apelink <256> T

Q, QT Qle, Q|4

GTU

AXI-ST <256>

—

) 4

0.
(FS

Flush
FIFO OUT RDO

apelink <256> T

GTU

AXI-ST <256>

e,
@9

Flush
FIFO OUT RDO

I

To

>
DAM-II

To
DAM-II



dRICH Data Reduction Stage on FPGA: example deployment

DAM-I

Sector O
DAM-II

GTU Sector 5

GTU

GTU

GTU

42
GTU

GTU (..., IT)

100 GbE

)

GTU (trigger to DAM-I)

AXI-ST <256> |

Qoo Qo1 Qouz Qoz Qosa Qos GTU

A

|| e mp 4. 0Am

DAM-II

AXI-ST <256>

~ ‘ \, Trigger
AXI-ST <1> \. Evaluation

From Qg Qpy, -

NN-II

Input 6 x5x16

'Q05—>

_/ Relu

_ Relu
- e _/ Relu
—> —>I+>
Out (Signal or Bg) 1-bit
FC3 16
FC2 48

FC1 96



Current status and outlook

* We have started collecting datasets and experimenting with
iInference models.

» Detalls of the final deployment will be affected by several factors
 Final selection on the inference model(s): BDT, MLP, CNN, GNN, ...

* Net amount of FPGA resources available (discounting the “standard” DAQ
firmware) in DAMSs.

 Actual additional DAQ resources (DAMs, ...) dedicated to the data
reduction system.

 Possible additional features

* Provide services (statistics) for the online monitoring.

« Having track seeds information from the Interaction Tagger could enable
more sophisticated features

Particle counting
Particle identification

 We have devised a method to tag reconstructed events with PIDs.

24
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NN Th hput model |t (
| roughput modeling (results ¢
Bandwidth analysis Limit Comments
NPUT |Sensor rate per channel [kHz] 300,00 - _ 4.000,00 ALCO R
Rate post-shutter [kHz] 55,2 800,00
Throughput to serializer [ Mb/s] - 788,16 RDO
Throughput from ALCORS4 [Mbls] limit FPGA dependent: with RDO prototype we will have something
Throughput from RDO [ Gb/s] 08 12,70|based on Microchip
Input at each DAM | [Gbps] 49,59 584,20
Buffering capacity at DAM | [MB] 0,01 to be checked but seems manageable
Throughput from DAM | to DAM Il [Gbps] 0,25 12,70|this might be higher (from FELIX to FELIX) This is the aggregated
Output to each DAM Il [Gbps] 6,70 342,90 number we could sell
Aggregated dRICH data Commente—""_
Total input at DAM | [ Gb/s ] 1.339,03 This is only "inside™ DAM, not to be transferred on PCI
Total input at DAM Il [ Gb/s ] 6,70| This is based on aggregation above + reduction factor of the interaction tagger
Total output from DAM Il [ Ghb/s ] 6,70 FurlMibh to be investigated (FPGA level?)
Note: first hard limit (RDO-DAM link) hit only at 3 MHz input.. But we should think
how to present things...
(see next slide)

14/09/23 - DAQ, Group P. Antonioli - dRICH trhoughput



PID in NA62 with the RICH using NN on FPGA at LO Trigger

Goal: for any event detected by the RICH g
provide an estimate for the number charged o
particles and the number of electrons - 0
Streaming readout processing on FPGA using
. . Vessel diameter4—3.4m
Neural Networks for classification (10 MHz). Volume~200m®  Beam Pipe
2 x~1000 PM
Produce a new primitives stream for LOTP+
The main challenge is the proc. throughput
Primitives from
_ Example s from Class 2 TEL62 other detectors

-1 i i 4x TEL62
| | , 47774

77/
' ' ' — 777
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e ol 24 1]
o ‘ . | ll 8x 1GbE links Y X4
| | , 777
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Design and Implementation Workflow

Tensor

Vivado™ HLS §| C Simulation

C Synthesis
QKeras ‘hls 4 ml ‘ ' C/Verilog Co-sim.

TF/Keras QKeras Vivado HLS IP Generation
Model Model Project

'l: Keras‘

Design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA resource usage) must be
taken into account and verified at any stage:

Generation strategy of training and validation data sets.
TF/KERAS NN architecture (number and kind of layers) and representation of the input

* Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
QKeras Serach iteratively the minimal representation size in bits of weights, biases and activations,
possibly by layer.
hls4ml Tuning of REUSE FACTOR config param (low values -> low latency, high throughput, high resource
usage), clock frequency.
Vivado HLS co-simulation for verification of performance (experimented very good agreement with
QKeras Model)

28



NN Architectures: Dense Model

Input representation: normalized
hitlist (max 64 hits per event)

Output: 4 classes (0, 1, 2, 3+ rings)
Quantization (fixed point)

— Weights and biases: 8 bits <8, 1>

— Activations: 16 bits <16, 6>

FPGA resource usage (VCU118)
LUT 14%, DSP 2%, BRAM 0%

Latency: 22 cycles @ 150MHz

Initiation Interval (I1): 8 cycles
Throughput: 18.75 MHz

!%
XX
"‘:td -
2N 0
L3 L
4 2
Y i 3+
dense Classification
fully-connected GuLpHL
Layer (type) Output Shape Param #
inputl (Inputlayer) [ (None, 64)] 0
fcl (Dense) (None, 64) 4160
actl (Activation) (None, 64) 0
fc2 (Dense) (None, 16) 1040
act2 (Activation) (None, 16) 0
fc3 (Dense) (None, 4) 68
softmax (Activation) (None, 4) 0

29



zero-padding

NN Architectures: Convolutional Model |

@ zero-padding .
> ) pooling

= Input representation: 16x16 images E

= Qutput: 4 classes (0, 1, 2, 3+ rings) < ) R

= Quantization (fixed point): convolutional  pooling A Hngf;
— Weights and biases: 8 bits <8, 1> . CE%“E%E’[‘S" f:m;:d C'EZT,EL?E’S"”
— Activations:16 bits <16, 6> Layer (type) Output Shape Param #

» FPGA resource usage (Alveo U200) imeutt (inputhayes {one, 36, 16, 010

LUT 5_2%, FF 1_5%, DSP 4_8%, convl (Cm-w2D)- (None, 16, 16, 8) 80
BRAM 005% actl (Activation) (None, 16, 16, 8) 0

maxpl (MaxPooling2D) (None, 8, 8, 8) 0

= [atency: 388 cycles @ 220MHz conv? (Conv2D) (None, 8, 8, 8) 564
= Initiation Interval (Il): 369 cycles actz (activation (one, 8, 8, 8) 0
. Throughput: 0_6 MHZ maxp2 (MaxPooling2D) (None, 4, 4, 8) 0
. , flatten (Flatten) (None, 128) 0

fc3 (Dense) (None, 16) 2064
act3 (Activation) (None, 16) 0
fcd4 (Dense) (None, 4) 68
softmax (Activation) (None, 4) 0

Total params: 2,796 30



Convolutional model — Kernel replication

Throughput is not enough to sustain LO rate, but we can replicate the network
multiple times, also on multiple devices if necessary.

- Imagify 1 |=—-»| NNet1 |=—

—»| Imagify 2 | =-»]| NNet2 |-—

|:> Dispatcher |

NNet 11

—»| Imagify 11

l

> I mgp_out_1

- Imagify 12

|

NNet 12 > I mgp_out_2

¥ mgp_out_3
> I mgp_out_4

> I mgp_out_5
> I mgp_out 6

Resources usage for 12 replicas: W map_out 7

> Ik mgp_out_8

e LUT 74% ¥ mgp_out 9

> | mgp_out_10

'Y (o) > I mgp_out_ 11
FF17%

* DSP61% e,

> I mgp_in_

° BRAM 14% . ¥ mgp_in_2

Processing time @220MHz: 137 ns oo

per event > I mgp_in_7

> I-mgp

Processing throughput: 7.2 MHz s W mgpns

- mgp_in_.
> I mgp_in_




Dense Model: results for classification of number of rings

= Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

12 035
08
Counts Counts Normallzed 030 Counts Normallzed per true Label (horlzontal} Counts Normallzed per prediction (vertical}
. 0.8
1o 0.7
0] 477000 78433 1144 59 0 0.14 0.02 0.00 0.00 0 0
0.25
06
08
0.6
1 22057 1230326 3111 1 0.01 0.04 0.00 1 1
_ _ 0.20 _ 05 _
2 & 2 2
= L = "
@ ro6 o [
£ £ £ Loa £
2- 2 173728 663319 80414 2 0.00 0.05 0.02 0.5 2 2 o4
l 0.4 Fo3
0.10
3 [} 2044 173165 448421 3 0.00 0.00 0.05 013 31 0.00 0.28 Loz 3 0.00 018
i Fo.2
T [ Dz T o 05 T T
0 1 2 3 0 1 2 3 ) 0 1 2 3 Lo 0 1 2 3
Fredicted label Predicted label Fredicted label Predicted label
L—Loo L—Lo00 LLoo L oo
10° Multi-Class ROC Curve

1 === ROC curve of class 0 (area = 0.99)
ROC curve of class 1 (area = 0.95)
] —— ROC curve of class 2 (area = 0.90)
| == ROC curve of class 3 (area = 0.97)

Class 0 (0 rings) Efficiency 85.7 Purity 95.6
Class 1 (1 rings) Efficiency 87.7 Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3

Efficiency =TP / (TP + FN)
Purity =TP / (TP + FP)

Background Efficiency (False Positive Rate)

10-3

0.0 0.2 0.4 0.6 0.8 10
Signal Efficiency (True Positive Rate)



Convolutional Model: results for classification of number of rings

= Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

o

Counts

493115 61516 1921 a3

31262 1254784 113951 3165

7 682804 §9560
o 2101 170970 450559
0 1 2 3

Predicted label

ro.6

roa

ro.2

-0.0

Counts Normallzed

N 0.01

q 0.00

b 0.00

0.02 0.00

0.00 0.05

0.00

0.00

002

0.13

1 2
Predicted label

Counts Normalized per true Label (horlzontal}

Fredicted label

ro4

ros

ro.2

ro1

Counts Normallzed per prediction (vertical}

Ho.4
0.00 018
Lo.2
0 1 2
Predicted label
L Loo

Multi-Class ROC Curve

10°

Class 0 (0 rings) Efficiency 88.6 Purity 94.0
Class 1 (1 rings) Efficiency 89.5 Purity 84.6
Class 2 (2 rings) Efficiency 74.4 Purity 70.5
Class 3 (3+ rings) Efficiency 72.2 Purity 86.1

Efficiency =TP / (TP + FN)
Purity =TP / (TP + FP)

Background Efficiency (False Positive Rate)

1073

= ROC curve of class 0 (area = 0.99)

ROC curve of class 1 (area = 0.96)
= ROC curve of class 2 (area = 0.92)
= ROC curve of class 3 (area = 0.97)

0.0

0.2

0.4 0.6 0.8 L0

Signal Efficiency (True Positive Rate)
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