

RICH pattern recognition with FPGA: from NA62 to dRICH

Alessandro Lonardo (INFN Roma1, APE Lab) for the EIC_NET Roma1&ToV team

> Giornate Nazionali EIC_NET 2024 27-28 Giugno 2024 Bologna

The NA62 Experiment at CERN SPS

The NA62 Data Acquisition and Low Level Trigger

 Some detectors send raw data (*primitives*) to the FPGA-based level-0 trigger processor L0TP

To PC-Farm (L1)

- Primitives are generated from **TEL62 read out boards**
- L0TP checks conditions (Masks) to determine if an event should be selected and sent to L1
- Masks rely on the physics information inside the primitives (Energy, hit multiplicity, position, ...)

The NA62 Data Acquisition and Low Level Trigger

 Some detectors send raw data (*primitives*) to the FPGA-based level-0 trigger processor L0TP

To PC-Farm (L1)

- Primitives are generated from **TEL62 read out boards**
- LOTP checks conditions (Masks) to determine if an event should be selected and sent to L1
- Masks rely on the **physics information inside the primitives** (Energy, hit multiplicity, position, ...)

The NA62 Ring Imaging Cherenkov detector (RICH)

mn

mm

- During offline data analysis, it provides PID to distinguish between pions and muons from 15 to 35 GeV
- Uses the Cherenkov rings radius and track momentum
- L0 primitives contain only number of HIT PMTs

Smart Primitives: FPGA-RICH

FPGA-RICH: reconstruct the rings geometry online using

an AI algorithm on FPGA, to generate a refined primitive stream for L0TP selection masks

Workflow for Neural Networks deployment on FPGA

resources, throughput, and NN accuracy

Neural Network Model (actually one of them...)

positions in the input layer.

LUT = 14% Flip-Flop = 6% DSP = 7% BRAM = 3% on Versal VCK190

Neural Network Sensitivity

ROC Curve, Throughput & Latency

NN: avg Throughput ≈ 21 MHz Latency = 160 ns at 300 MHz clock

Integration of the FPGA-RICH Pipeline

Integration of the FPGA-RICH Pipeline

APEIRON: an overview

- **Goal:** develop a framework offering hardware and software support for the execution of real-time dataflow applications on a system composed by interconnected FPGAs .
 - Map the dataflow graph of the application on the distributed FPGA system and offers runtime support for the execution.
 - Allow users with no (or little) experience in hardware design tools, to develop their applications on such distributed FPGA-based platforms
 - Tasks are implemented in C++ using High Level Synthesis tools (Xilinx Vitis).
 - Lightweight C++ communication API
 - Non-blocking send()
 - Blocking *receive()*
 - APEIRON is based on Xilinx Vitis High Level Synthesis framework and on INFN Communication IP (APE Router)

APEIRON: INFN Communication IP

 INFN is developing the IPs implementing a direct network that allows low-latency data transfer between processing tasks deployed on the same FPGA (intra-node communication) and on different FPGAs (inter-node communication).

APEIRON: the Node

- Host Interface IP: Interface the FPGA logic with the host through the system bus.
 - Xilinx XDMA PCIe Gen3
- Routing IP: Routing of intra-node and inter-node messages between processing tasks on FPGA.
- Network IP: Network channels and Application-dependent I/O
 - APElink 40 Gbps
 - UDP/IP over 10 GbE
- Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)

APEIRON: Communication Latency

Test modes

- Local-loop (red arrow)
- Local-trip (green arrows)
- Round-trip (blue arrows)

Test Configuration

- IP logic clock @ 200 MHz
- 4 intranode ports
- 2 internode ports
- 256-bit datapath width
- 4 lanes inter-node channels

Inter-node LATENCY (orange line) < 1us for packet sizes up to 1kB (source and destination buffers in BRAM)

dRICH Data Reduction Stage on FPGA

- Objective: design of a data reduction stage for the dRICH with a ~100 data bandwidth reduction in DAM-I level output to DAM-II level input.
- Make exclusive use of DAQ components (Felix DAMs) Add few DAM units wrt the bare minimum neèded to readout the 1248 RDO
 - links to implement a distributed processing scheme.
 - Integration with the Interaction Tagger to boost performance and enable other features.
- Online Signal/Background discrimination using ML
 - Collecting datasets using data available from simulation campaigns
 - Background:

 - e/p with beam pipe gas
 Synchrotron radiation (MC only?)
 - Merged: signal + e/p with beam pipe gas background (full), few events
 - SiPM Noise
 - DCR modelled in the reconstruction stage
 - Spatial and time dependency of the rate?

dRICH Data Reduction Stage on FPGA

- Online Signal/Background discrimination using ML (continued)
 - Study of Inference Models
 - Restricting our study to inference models that can be deployed on FPGA with reasonable effort (using a High-Level Synthesis workflow)
 - MLP, CNN, GNN NN Models (HLS4ML)
 - BDT (Conifer)
 - Inference throughput (98.5 MHz) is the main concern.
 - HDL optimized implementation is an option.
 - Deployment on multiple Felix DAMs directly interconnected with the APE communication IPs

dRICH Data Reduction Stage on FPGA: example deployment

routed by one DAM-I to DAM-II

dRICH Data Reduction Stage on FPGA: example deployment

dRICH Data Reduction Stage on FPGA: example deployment

- We have started collecting datasets and experimenting with inference models.
- Details of the final deployment will be affected by several factors
 - Final selection on the inference model(s): BDT, MLP, CNN, GNN, ...
 - Net amount of FPGA resources available (discounting the "standard" DAQ firmware) in DAMs.
 - Actual additional DAQ resources (DAMs, ...) dedicated to the data reduction system.
- Possible additional features
 - Provide services (statistics) for the online monitoring.
 - Having track seeds information from the Interaction Tagger could enable more sophisticated features
 - Particle counting
 - Particle identification
 - We have devised a method to tag reconstructed events with PIDs.

Backup Slides

Throughput modeling (results)

	Bandwidth analysis		Limit	Comments			
NPUT	Sensor rate per channel [kHz]	300,00 🔻	4.000,00			1	ALCOR
	Rate post-shutter [kHz]	55,20	800,00				ALCON .
	Throughput to serializer [Mb/s]	34,50	788,16				PDO
	Throughput from ALCOR64 [Mb/s]	276,00		limit FPGA dependent: with RDO prototype we v	will have somethin	ng 📕	RDO
	Throughput from RDO [Gb/s]	1,08	12,70	based on Microchip			
	Input at each DAM I [Gbps]	49,59	584,20				
	Buffering capacity at DAM I [MB]	0,01		to be checked but seems manageable			
	Throughput from DAM I to DAM II [Gbps]	0,25	12,70	this might be higher (from FELIX to FELIX)			This is the aggregated
	Output to each DAM II [Gbps]	6,70	342,90				number we could sell
							hamber we could sen

Aggregated dRICH data		Commente		
Total input at DAM I [Gb/s]	1.339,03	This is only "inside" DAM, not to be transferred on PCI		
Total input at DAM II [Gb/s]	6,70	This is based on aggregation above + reduction factor of the interaction tagger		
Total output from DAM II [Gb/s]	6,70	Further reduction possible to be investigated (FPGA level?)		

Note: first hard limit (RDO-DAM link) hit only at 3 MHz input..

But we should think how to present things... (see next slide)

PID in NA62 with the RICH using NN on FPGA at L0 Trigger

- Goal: for any event detected by the RICH provide an estimate for the number charged particles and the number of electrons
- Streaming readout processing on FPGA using Neural Networks for classification (10 MHz).
- Produce a new primitives stream for L0TP+
- The main challenge is the proc. throughput

Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:

- Generation strategy of training and validation data sets.
- **TF/KERAS** NN architecture (number and kind of layers) and **representation of the input**
 - Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
- **QKeras** Serach iteratively the minimal representation size in bits of weights, biases and activations, possibly by layer.
- hls4ml Tuning of REUSE FACTOR config param (low values -> low latency, high throughput, high resource usage), clock frequency.
- Vivado HLS co-simulation for verification of performance (experimented very good agreement with QKeras Model)

NN Architectures: Dense Model

- Input representation: normalized hitlist (max 64 hits per event)
- Output: 4 classes (0, 1, 2, 3+ rings)
- Quantization (fixed point)
 - Weights and biases: 8 bits <8, 1>
 - Activations: 16 bits <16, 6>
- FPGA resource usage (VCU118) LUT 14%, DSP 2%, BRAM 0%
- Latency: 22 cycles @ 150MHz
- Initiation Interval (II): 8 cycles
- Throughput: 18.75 MHz

Layer (type)	Output Shape	Param #
input1 (InputLayer)	[(None, 64)]	0
fc1 (Dense)	(None, 64)	4160
act1 (Activation)	(None, 64)	0
fc2 (Dense)	(None, 16)	1040
act2 (Activation)	(None, 16)	0
fc3 (Dense)	(None, 4)	68
softmax (Activation)	(None, 4)	0

Total params: 5,268

NN Architectures: Convolutional Model

- Input representation: 16x16 images
- Output: 4 classes (0, 1, 2, 3+ rings)
- Quantization (fixed point):
 - Weights and biases: 8 bits <8, 1>
 - Activations:16 bits <16, 6>
- FPGA resource usage (Alveo U200) LUT 5.2%, FF 1.5%, DSP 4.8%, BRAM 0.05%
- Latency: 388 cycles @ 220MHz
- Initiation Interval (II): 369 cycles
- Throughput: 0.6 MHz

zero-padding zero-padding pooling input image convolutional pooling NN 2D Classification dense convolutional fully-connected output NN + ReLu Output Shape Layer (type) Param input1 (InputLayer) [(None, 16, 16, 1)] 0 (None, 16, 16, 8) conv1 (Conv2D) 80 (None, 16, 16, 8) act1 (Activation) 0 (None, 8, 8, 8) maxp1 (MaxPooling2D) 0 conv2 (Conv2D) (None, 8, 8, 8) 584 (None, 8, 8, 8) act2 (Activation) 0 (None, 4, 4, 8) maxp2 (MaxPooling2D) 0 flatten (Flatten) (None, 128) 0 2064 fc3 (Dense) (None, 16) act3 (Activation) (None, 16) 0 fc4 (Dense) 68 (None, 4) softmax (Activation) (None, 4) 0

Total params: 2,796

Convolutional model – Kernel replication

Throughput is not enough to sustain L0 rate, but we can replicate the network multiple times, also on multiple devices if necessary.

31

Dense Model: results for classification of number of rings

• Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Convolutional Model: results for classification of number of rings

• Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

