

Giornate Nazionali EIC_NET 2024 — Bologna

27-28 June 2024

Precision studies of QCD in the low energy domain of the EIC: a personal view

Marco Radici

Giornate Nazionali EIC_NET 2024 — Bologna

27-28 June 2024

Precision studies of QCD in the low energy domain of the EIC: a personal view

Marco Radici

The reference paper

Precision Studies of QCD in the Low Energy Domain of the EIC

V.D. Burkert,¹ L. Elouadrhiri,¹ A. Afanasev,² J. Arrington,³ M. Contalbrigo,⁴ W. Cosyn,^{5,6} A. Deshpande,⁷ D.I. Glazier,⁸ X. Ji,^{9,10} S. Liuti,¹¹ Y. Oh,^{12,13} D. Richards,¹ T. Satogata,¹ A. Vossen,^{14,1} H. Abdolmaleki,¹⁵ A. Albataineh,¹⁶ C.A. Aidala,¹⁷ C. Alexandrou,¹⁸ H. Avagyan,¹ A. Bacchetta,¹⁹ M. Baker,¹ F. Benmokhtar,²⁰ J.C. Bernauer,^{7,21} C. Bissolotti,¹⁹ W. Briscoe,² D.Byers,¹⁴ Xu Cao,²² C.E. Carlson,²³ K. Cichy,²⁴ I.C. Cloet,²⁵ C. Cocuzza,²⁶ P.L. Cole,²⁷ M. Constantinou,²⁶ A. Courtoy,²⁸ H. Dahiyah,²⁹ K. Dehmelt,⁷ S. Diehl,^{30,31} C. Dilks,¹⁴ C. Djalali,³² R. Dupré,³³ S.C. Dusa,¹ B. El-Bennich,³⁴ L. El Fassi,³⁵ T. Frederico,³⁶ A. Freese,³⁷ B.R. Gamage,¹ L. Gamberg,³⁸ R.R. Ghoshal,¹ F.X. Girod,¹ V.P. Goncalves,^{39, 22, 40} Y. Gotra,¹ F.K. Guo,^{41, 42} X. Guo,⁹ M. Hattawy,⁴³ Y. Hatta,⁴⁴ T. Hayward,³⁰ O. Hen,⁴⁵ G. M. Huber,⁴⁶ C. Hyde,⁴³ E.L. Isupov,⁴⁷ B. Jacak,³ W. Jacobs,⁴⁸ A. Jentsch,⁴⁴ C.R Ji,⁴⁹ S. Joosten,²⁵ N. Kalantarians,⁵⁰ Z. Kang,^{51,52,53} A. Kim,^{30,1} S. Klein,³ B. Kriesten,¹⁰ S. Kumano,⁵⁴ A. Kumar,⁵⁵ K. Kumericki,⁵⁶ M. Kuchera,⁵⁷ W.K. Lai,^{58, 59, 51} Jin Li,⁶⁰ Shujie Li,³ W. Li,⁶¹ X. Li,⁶² H.-W. Lin,⁶³ K.F. Liu,⁶⁴ Xiaohui Liu,^{65,66} P. Markowitz,⁵ V. Mathieu,^{67,68} M. McEneaney,¹⁴ A. Mekki,⁶⁹ J.P. B. C. de Melo,⁷⁰ Z.E. Meziani,²⁵ R. Milner,⁴⁵ H. Mkrtchyan,⁷¹ V. Mochalov,^{72,73} V. Mokeev,¹ V. Morozov,⁷⁴ H. Moutarde,⁷⁵ M. Murray,⁷⁶ S. Mtingwa,⁷⁷ P. Nadel-Turonski,⁵³ V.A. Okorokov,⁷³ E. Onvie,¹ L.L.Pappalardo,^{4,78} Z. Papandreou,⁷⁹ C. Pecar,¹⁴ A. Pilloni,^{80,81} B. Pire,⁸² N. Polys,⁸³ A. Prokudin,^{84,1} M. Przybycien,⁸⁵ J-W. Qiu,¹ M. Radici,⁸⁶ R. Reed,⁸⁷ F. Ringer,^{1,43} B.J. Roy,⁸⁸ N. Sato,¹ A. Schäfer,⁸⁹ B. Schmookler,⁹⁰ G. Schnell,⁹¹ P. Schweitzer,³⁰ R. Seidl,^{92,21} K.M. Semenov-Tian-Shansky,^{12,93,94} F. Serna,^{95,96} F. Shaban,⁹⁷ M.H. Shabestari,⁹⁸ K. Shiells,¹⁰ A. Signori,^{99,100} H. Spiesberger,¹⁰¹ I. Strakovsky,² R.S. Sufian,^{23,1} A. Szczepaniak,^{102,1} L. Teodorescu,¹⁰³ J. Terry,^{51,52} O. Teryaev,¹⁰⁴ F. Tessarotto,¹⁰⁵ C. Timmer,¹ Abdel Nasser Tawfik,¹⁰⁶ L. Valenzuela Cazares,¹⁰⁷ A. Vladimirov,^{89,108} E. Voutier,³³ D. Watts,¹⁰⁹ D. Wilson,¹¹⁰ D. Winney,^{111,112} B. Xiao,¹¹³ Z. Ye,¹¹⁴ Zh. Ye,¹¹⁵ F. Yuan,³ N. Zachariou,¹⁰⁹ I. Zahed,⁷ J.L. Zhang,⁶⁰ Y. Zhang,¹ and J. Zhou¹¹⁶

Prog. Part. Nucl. Phys. 131 (2023) 104032, arXiv:2211.15746

from the FOREWORD:

The goal of the initiative leading to this white paper was to take a fresh look at the changing landscape of the science underlying the need of a complementary approach towards the overall optimization and the execution of the EIC science program, and include, where appropriate, recent scientific advancements and challenges that go beyond the original motivation for the EIC.

- kickoff meeting (hybrid), MIT Dec. 15-16 2020
- 1st workshop (online), ANL+CFNS Mar. 17-19 2021
- 2nd workshop (online), APCTP+CFNS Jul. 19-23 2021

https://indico.bnl.gov/event/9794 https://indico.bnl.gov/event/10677

https://indico.bnl.gov/event/11669

from the FOREWORD:

The goal of the initiative leading to this white paper was to take a fresh look at the changing landscape of the science underlying the need of a complementary approach towards the overall optimization and the execution of the EIC science program, and include, where appropriate, recent scientific advancements and challenges that go beyond the original motivation for the EIC.

... It identifies part of the science program in the precision studies of QCD that require or greatly benefit from the high luminosity and low to medium centerof-mass energies, and it documents the scientific underpinnings in support of such a program. The objective of this document is to help define the path towards the realization of the second interaction region.

- kickoff meeting (hybrid), MIT Dec. 15-16 2020
- 1st workshop (online), ANL+CFNS Mar. 17-19 2021
- 2nd workshop (online), APCTP+CFNS Jul. 19-23 2021

https://indico.bnl.gov/event/9794

https://indico.bnl.gov/event/10677

https://indico.bnl.gov/event/11669

Outline of paper

- I. Executive Summary
- II. GPDs 3D Imaging and mechanical properties of the nucleon
- III. Mass and spin of the nucleon
- IV. Accessing the Momentum Dependent Structure of the nucleon in Semi-Inclusive Deep Inelastic Scattering
- V. Exotic meson spectroscopy
- VI. Science highlights of light and heavy nuclei
- VII. Precision studies of Lattice QCD in the EIC era
- VIII. Science of far forward particle detection
 - IX. Radiative effects and corrections
 - X. Artificial Intelligence applications
 - XI. The EIC interaction regions for a high impact science program with discovery potential

too many topics for a thorough overview in 30 min.

Outline of paper

I. Executive Summary

- II. GPDs 3D Imaging and mechanical properties of the nucleon
- III. Mass and spin of the nucleon
- IV. Accessing the Momentum Dependent Structure of the nucleon in Semi-Inclusive Deep Inelastic Scattering
- V. Exotic meson spectroscopy
- VI. Science highlights of light and heavy nuclei
- VII. Precision studies of Lattice QCD in the EIC era
- VIII. Science of far forward particle detection
 - IX. Radiative effects and corrections
 - X. Artificial Intelligence applications
 - XI. The EIC interaction regions for a high impact science program with discovery potential

too many topics for a thorough overview in 30 min. personal list of some top measurements

clusive processes

II. GPDs - 3D Imaging and mechanical properties of the nucleon $\sigma \sim |T^{DVCS} + T^{BH}|^{-1}$ III. Mass and spin of the nucleon $\Delta \sigma = \sigma^+ - \sigma^- \propto I(DVCS \cdot BH)$

+

+

Deeply Virtual Compton Scattering (DVCS)

interference of BH-DVCS amplitudes

→ eNγ) =

$$\sigma \sim \left| T^{DVCS} + T^{BH} \right|^2$$
$$\Delta \sigma = \sigma^+ - \sigma^- \propto I (DVCS \cdot BH)$$

clusive processes

II. GPDs - 3D Imaging and mechanical properties of the nucleon $\sigma \sim |T^{DVCS} + T^{BH}|^{-1}$ III. Mass and spin of the nucleon $\Delta \sigma = \sigma^+ - \sigma^- \propto I(DVCS \cdot BH)^{-1}$

+

+

→ eNγ) =

clusive processes

II. GPDs - 3D Imaging and mechanical properties of the nucleon $\sigma \sim |T^{DVCS} + T^{BH}|^{-1}$ III. Mass and spin of the nucleon $\Delta \sigma = \sigma^+ - \sigma^- \propto I(DVCS \cdot BH)^{-1}$

+

+

- → eNγ) =

$$\operatorname{CFF}(\xi, t) = \operatorname{PV} \int_{-1}^{1} dx \, \frac{\operatorname{GPD}(x, \xi, t)}{x - \xi} \, - \, i\pi \operatorname{GPD}(x = \pm \xi, \xi, t) + o\left(\frac{1}{Q^2}\right)$$

leading-twist GPDs

GPD are Fourier Transform of matrix elements of bilocal operators

	4 structures accessible in DVCS					
	operator	GPD	CFF	FF		
unpol. quark • L-pol. quark	$rac{\mathbf{vector}}{ar{\psi}\gamma^{\mu}\psi}$	Н	H	F ₁		
	${\color{red}tensor}\over ar{\psi}\sigma^{\mu u}\Delta_{ u}\psi$	Е	E	F ₂	flin N spin	
	axial vector $\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$	Ĥ	$ ilde{\mathcal{H}}$	GA	тризрп	
	pseudo-scalar $\bar{\psi}\gamma_5\psi$	Ē	Ĩ	GP		

4 additional chiral-odd structures (T-pol. quark) accessible only in DVMP

Polynomiality (Lorentz covariance)

$$\int_{-1}^{1} dx \, x^m \, \text{GPD}(x,\xi,t) = \sum_{j=0}^{\left[\frac{m}{2}\right]} \, \xi^{2j} \, C_{2j}(t) + \, \text{mod}(m,2) \, \xi^{m+1} \, C_{m+1}(t)$$

Ji, J.Phys.G **24** (98) 1181 Radyushkin, P.L. **B449** (99) 81

Ex.

Polynomiality (Lorentz covariance)

$$\int_{-1}^{1} dx \, x^m \, \text{GPD}(x,\xi,t) = \sum_{j=0}^{\left[\frac{m}{2}\right]} \, \xi^{2j} \, C_{2j}(t) + \, \text{mod}(m,2) \, \xi^{m+1} \, C_{m+1}(t)$$

Ji, J.Phys.G **24** (98) 1181 Radyushkin, P.L. **B449** (99) 81

special cases:

 $m=0 \rightarrow connection to form factors FF(t)$

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$
$$\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

Polynomiality (Lorentz covariance)

$$\int_{-1}^{1} dx \, x^m \, \text{GPD}(x,\xi,t) = \sum_{j=0}^{\left[\frac{m}{2}\right]} \, \xi^{2j} \, C_{2j}(t) + \, \text{mod}(m,2) \, \xi^{m+1} \, C_{m+1}(t)$$

Ji, J.Phys.G **24** (98) 1181 Radyushkin, P.L. **B449** (99) 81

special cases:

 $m=0 \rightarrow connection to form factors FF(t)$

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$
$$\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

m=1 \rightarrow generalized form factors \rightarrow extrapolation $(t \rightarrow 0) \rightarrow$ mass and spin Ex. $\int_{-1}^{1} dx \, x \, H^q(x,\xi,t) = M^q(t) + D^q(t) \, \xi^2$ $\int_{-1}^{1} dx \, x \, E^q(x,\xi,t) = 2J^q(t) - M^q(t) - D^q(t) \, \xi^2$ D(0) "D-term" related to

Ex.

mechanical properties Polyakov, P.L. **B555** (03) 57

byproduct: N spin sum rule $\frac{1}{2} \int_{-1}^{1} dx \, x \, \left[H^q(x,\xi,0) + E^q(x,\xi,0) \right] = J^q$

Ji, P.R.L. 78 (97) 610

$$\mathbf{QCD \ Energy-Momentum \ Tensor \ (EMT)} \qquad T^{\mu\nu} = \bar{\psi}\gamma^{\mu}\frac{i}{2}\overleftrightarrow{D^{\nu}\psi} - F^{a\mu\lambda}F^{a\nu}_{\quad \lambda} + \frac{1}{4}g^{\mu\nu}F^{2}$$
$$\langle P'|T^{q,g}_{\mu\nu}|P\rangle = \bar{u}(P') \left[M^{q,g}(t)\frac{P_{\mu}P_{\nu}}{M_{N}} + J^{q,g}(t)\frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_{N}} + D^{q,g}(t)\frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M_{N}} + \bar{c}_{q,g}(t)g_{\mu\nu} \right] u(P)$$

Relation with second-moments of GPDs:

"Charges" of the EMT Form Factors at t=0

Relation with second-moments of GPDs:

"Charges" of the EMT Form Factors at t=0

Relation with second-moments of GPDs:

"Charges" of the EMT Form Factors at t=0

Attempts of Femtography

Probability density distribution in impact parameter space

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d\mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H^q(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

Burkardt, P.R. D62 (00) 071503

extrapolation of data to $\xi \sim \Delta P^+ = 0$

$$\langle \mathbf{b}_{\perp}^{2}(x) \rangle = \frac{\int d\mathbf{b}_{\perp} \, \mathbf{b}_{\perp}^{2} \, q(x, \mathbf{b}_{\perp})}{\int d\mathbf{b}_{\perp} \, q(x, \mathbf{b}_{\perp})}$$

Attempts of Femtography

Probability density distribution in impact parameter space

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d\mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H^q(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

Burkardt, P.R. D62 (00) 071503

extrapolation of data to $\xi \sim \Delta P^+ = 0$

fitting H^q to CLAS6 and HERMES data

$$\langle \mathbf{b}_{\perp}^{2}(x) \rangle = \frac{\int d\mathbf{b}_{\perp} \, \mathbf{b}_{\perp}^{2} \, q(x, \mathbf{b}_{\perp})}{\int d\mathbf{b}_{\perp} \, q(x, \mathbf{b}_{\perp})}$$

Moutarde et al., E.P.J. C78 (18) 890

high-momentum (valence) quarks are at the core of the nucleon, low-momentum (sea) quarks spread to its periphery

Attempts of Femtography

Angular momentum

$$J^{q} = \frac{1}{2} \int_{-1}^{1} dx \, x \, \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right]$$

D-term from $\int_{-1}^{1} dx \, x \, H^{q}(x,\xi,t) = M^{q}(t) + D^{q}(t) \, \xi^{2}$ GPDs *H* and *E* $\int_{-1}^{1} dx \, x \, E^{q}(x,\xi,t) = 2J^{q}(t) - M^{q}(t) - D^{q}(t) \, \xi^{2}$

but GPDs are "buried" inside CFF H, E

D-term from GPDs H and E $\int_{-1}^{1} dx \, x \, H^{q}(x,\xi,t) = M^{q}(t) + D^{q}(t) \,\xi^{2}$ but GPDs are "buried" inside CFF \mathcal{H}, \mathcal{C}

DVCS: BSA data $\rightarrow \operatorname{Im}[\mathscr{H}]$, unpol. $d\mathbf{\sigma}^0 \rightarrow \operatorname{Re}[\mathscr{H}]$ dispersion relations: $\operatorname{Re}[\mathscr{H}(\xi, t, Q^2)] = \frac{1}{\pi} \operatorname{PV} \int dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x}\right) \operatorname{Im}[\mathscr{H}(x, t, Q^2)] - \Delta(t, Q^2)$ $\Delta(t, Q^2) = 4 \sum_{q} e_q^2 \left[d_1^q(t, Q^2) + d_3^q(t, Q^2) + d_5^q(t, Q^2) + \dots \right] \approx \frac{25}{18} \sum_{q} D^q(t)$

D-term from GPDs H and E $\int_{-1}^{1} dx \, x \, H^{q}(x,\xi,t) = M^{q}(t) + D^{q}(t) \,\xi^{2} \qquad \text{but GPDs are "buried"} \\
\int_{-1}^{1} dx \, x \, E^{q}(x,\xi,t) = 2J^{q}(t) - M^{q}(t) - D^{q}(t) \,\xi^{2} \qquad \text{inside CFF } \mathcal{H}, \,\mathcal{E}$

DVCS: BSA data $\rightarrow \operatorname{Im}[\mathscr{H}]$, unpol. $d\sigma^0 \rightarrow \operatorname{Re}[\mathscr{H}]$ dispersion relations: $\operatorname{Re}[\mathscr{H}(\xi, t, Q^2)] = \frac{1}{\pi} \operatorname{PV} \int dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right) \operatorname{Im}[\mathscr{H}(x, t, Q^2)] - \Delta(t, Q^2)$ $\Delta(t, Q^2) = 4 \sum e_q^2 \left[d_1^q(t, Q^2) + d_3^q(t, Q^2) + d_5^q(t, Q^2) + \dots \right] \approx \frac{25}{18} \sum D^q(t)$

Anikin & Teraev, P.R.D 76 (07) 056007

 $\int_{-1}^{1} dx \, x \, H^q(x,\xi,t) = M^q(t) + D^q(t) \, \xi^2$ D-term from but GPDs are "buried" GPDs H and E inside CFF H, E $\int_{-1}^{1} dx \, x \, E^q(x,\xi,t) = 2J^q(t) - M^q(t) - D^q(t) \, \xi^2$ DVCS: BSA data \rightarrow Im[\mathscr{H}], unpol. d $\sigma^0 \rightarrow$ Re[\mathscr{H}] dispersion relations: $\operatorname{Re}[\mathcal{H}(\xi, t, Q^2)] = \frac{1}{\pi} \operatorname{PV} \left[dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right) \operatorname{Im}[\mathcal{H}(x, t, Q^2)] - \Delta(t, Q^2) \right]$ using CLAS6 data $\Delta(t,Q^2) = 4\sum_{q} e_q^2 \left[d_1^q(t,Q^2) + d_3^q(t,Q^2) + d_5^q(t,Q^2) + \dots \right] \approx \frac{25}{18} \sum_{q} D^q(t)$ Uncertainties: 15 prior to CLAS data from CLAS @ 6 GeV data expected for JLab @ 12 GeV $Q^2 \to \infty$ $\frac{4}{5}d_1(t) = D(t)$ Repulsive 10 pressure r²p(r) (×10⁻² GeV fm⁻¹) $r^2 p(r)$ Anikin & Teraev, P.R.D 76 (07) 056007 stability $\int_0 dr \, r^2 \, p(r) = 0$ Confining pressure $D(0) = 4\pi M_N \int_0^\infty dr \, r^4 \, p(r) < 0$ consistent with 1.8 2.0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 r (fm) data & models Perevalova et al., P.R.D 94 (16) 054024 Girod et al., Nature 557 (18) 7705

Exclusive processes

Need to combine information from

- different DVCS measurement
- different processes

Exclusive processes

e+

P'+

P'+

 \rightarrow Transition Distribution Amplitudes (TDA)

$\sigma \sim |T^{DPCS} + T^{BR}|$ CFF combinations in DVCS

polarized beam BSA $\Delta \sigma_{LU} \sim \sin \phi f \left| \operatorname{Im}[\mathcal{H}], \operatorname{Im}[\tilde{\mathcal{H}}], \operatorname{Im}[\mathcal{H}] \right|$ unpol. target unpol. beam $\ell \text{TSA } \Delta \sigma_{\text{UL}} \sim \sin \phi f \left| \text{Im}[\mathcal{H}], \text{Im}[\tilde{\mathcal{H}}], \text{Im}[\tilde{\mathcal{B}}], \text{Im}[\tilde{\mathcal{B}}] \right|$ L-pol. target polarized beam DSA $\Delta \sigma_{LL} \sim (A + B \cos \phi) f \left| \operatorname{Re}[\mathcal{H}], \operatorname{Re}[\tilde{\mathcal{H}}], \operatorname{Re}[\tilde{\mathcal{H}}] \right|$ L-pol. target unpol. beam tTSA $\Delta \sigma_{\text{UT}} \sim \cos \phi \sin(\phi_S - \phi) f |\text{Im}[\mathcal{H}], \text{Im}[\mathcal{E}]|$ T-pol. target unpol. beam BCA $\Delta \sigma_{\rm c} \sim \cos \phi f$ Re[\mathscr{H}], Re[$\widetilde{\mathscr{H}}$], Re[\mathscr{H}] different charges unpol. target

History of DVCS exp.'s

JLAB				
Hall A	CLAS (Hall B)			
p,n-DVCS, Beam-pol. CS	p-DVCS, BSA, ITSA, DSA, CS			

DESY				
HERMES	H1/ZEUS			
p-DVCS,BSA,BCA, tTSA,lTSA,DSA	p-DVCS,CS,BCA			

CLAS, HERMES: first observation of DVCS-BH interference in the beamspin asymmetry (2001)

Hall A: test of scaling for DVCS (2006)

S. Niccolai, Transversity 2024

Ongoing and future programs

	S.	Niccolai, Transversity 2024	JLab12 DVC		
Observable (target)	12-GeV experiments	CFF sensitivity	Status		
σ , $\Delta \sigma_{\text{beam}}(p)$	Hall A	ReH(p), ImH(p)	Data taken in 2016; Phys. Rev. Lett. 128 (2022)		
	CLAS12		Data taken in 2018-2019; CS analysis under review		
	Hall C		Experiment just finished		
BSA(p) + TCS	CLAS12	ImH(p)	Data taken in 2018-2019; Phys. Rev. Lett. 130 (2023) Phys. Rev. Lett. 127 (2021)		
lTSA(p), lDSA(p)	CLAS12	$Im \mathcal{H}(p), Im \mathcal{H}(p), Re \mathcal{H}(p), Re \mathcal{H}(p)$	Experiment completed in March 2023		
tTSA(p)	CLAS12	ImH(p), ImE(p)	Experiment foreseen for > 2027 flavor sep. of CFF		
BSA(n)	CLAS12	Im£(n)	Data taken in 2019-2020; BSA paper ready for release		
lTSA(n), lDSA(n)	CLAS12	$Im\mathcal{H}(n), Re\mathcal{H}(n)$	Experiment completed in March 2023		

combining Hermes & Hall A p DVCS + CLAS12 BSA on p,n DVCS \rightarrow flavor separation of CFF + plans for **DDVCS** and **positron DVCS** Kumericki et al., JHEP 07 (11) 073

COMPASS DVCS

DVMP on π^0 , ρ^0 , ω , φ , J/ ψ using 2016,17 data \rightarrow

see N. d'Hose, Transversity 2024

- transversity GPD
- gluon GPD
- flavor decomposition

The EIC at low/medium energy: CFF

The EIC at low/medium energy: CFF

simulated DVCS events at the EIC (Fig.7 of paper)

the EIC at low energy can complement fixed-target data with higher precision

The EIC at low/medium energy: D-term

M Polyakov PIR 555 (2003) 57

QCD EMT

$$\langle P' | T_{\mu\nu}^{q,g} | P \rangle = \bar{u}(P') \left[M^{q,g}(t) \frac{P_{\mu}P_{\nu}}{M_N} + J^{q,g}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_N} + D^{q,g}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M_N} + \bar{c}_{q,g}(t) g_{\mu\nu} \right] u(P)$$

N mass

 $M_N \to \langle \mathbf{P} \,|\, T^q_{00} + T^g_{00} \,|\, \mathbf{P} \rangle =$

threshold γ - and e-production of J/ ψ or Y

 $\frac{\gamma_{\gamma}}{g} \int_{g} \frac{J/\Psi}{g} \int_{g} \frac{\gamma_{\gamma}}{g} \int_{g} \frac{J/\Psi}{g} \int_{g} \frac{J/\Psi}{g} \int_{g} \frac{J}{g} \int_{g}$

Semi-inclusive processes

IV. Accessing the Momentum Dependent Structure of the nucleon in Semi-Inclusive Deep Inelastic Scattering

factorization if $\mathbf{q}_T = \mathbf{P}_{hT}/z \ll \mathbf{Q}$ \mathbf{P}_{hT} "feels" intrinsic \mathbf{k}_T of confined motion

Ji, Yuan, Ma, P.R. D**71** (05) Rogers & Aybat, P.R. D**83** (11) Collins, "Foundations of Perturbative QCD" (11) Echevarria, Idilbi, Scimemi, JHEP **1207** (12)

Semi-inclusive processes

IV. Accessing the Momentum Dependent Structure of the nucleon in Semi-Inclusive Deep Inelastic Scattering

Semi-inclusive processes

IV. Accessing the Momentum Dependent Structure of the nucleon in Semi-Inclusive Deep Inelastic Scattering

SIDIS cross section

SIDIS cross section

SIDIS cross section

major impact from low/medium energy configurations

MAPTMD22 global fit of 2031 SIDIS + Drell-Yan data Bacchetta et al. (MAP Coll.), JHEP 10 (22) 127

EIC impact at $\sqrt{s} \sim 63$ GeV already important at x=0.1

- very different k_T behavior
- it changes with *x*

```
th. error band = 68% of all replicas
```

EIC impact on Sivers TMD

TSSA $e p^{\uparrow} \rightarrow e' + \pi^+ + X$

Fig.18 of the paper

Sivers TMD from Bacchetta et al., P.L. B827 (22) 136961

Fig.26 of the paper

EIC impact on Sivers TMD

TSSA $e p^{\uparrow} \rightarrow e' + \pi^+ + X$

Fig.18 of the paper

Sivers TMD from Bacchetta et al., P.L. **B827** (22) 136961

At x~0.1 larger impact from medium energy configuration

Tensor charge: tension pheno-lattice

adapted from D. Pitonyak, QCD Evolution 24

- approximate compatibility of JAM with other phenomenology when using both Collins effect and di-hadron mechanism but not including lattice results in the fit
- including lattice as prior, JAM still compatible with exp. data with both Collins effect and di-hadron mechanism but deviates from other phenomenology

EIC impact on tensor charge

Gamberg et al., P.L. B816 (21) JAM20 -----**Collins effect** δd JAM20 + EIC(ep) $JAM20 + EIC(ep + e^{3}He)$ -0.10 $\mathcal{L}=10 \text{ fb}^{-1}$, 8223 data pts. 0.50-0.15proton [GeV]: 0.75 0.85 0.95 1.05 Gupta et al (2018) $xh_1(x)$ 0.255x41, 5x100, 10x100, 18x275 -0.20U Alexandrou et al (2019) ³He [GeV]: -0.250.00 JAM20 5x41, 5x100, 18x100 $+ \operatorname{EIC}(ep)$ -0.30 \boldsymbol{d} $+\mathrm{EIC}(ep + e^{3}He)$ -0.250.550.650.750.85 δu 0.250.500.751.000.00 \boldsymbol{x}

0.0

di-hadron mechanism

 $\mathcal{L}=10 \text{ fb}^{-1}$, 3852 data pts proton&³He [GeV]: 10x100

Lattice results

- Alexandrou et al., arXiv:1909.00485 ETMC '19 1)
- Harris et al., P.R. D100 (19) 034513 Mainz '19 2)
- **LHPC '19** 3) Hasan et al., P.R. D99 (19) 114505
- **ILOCD '18** Yamanaka et al., P.R. D98 (18) 054516 4)
- PNDME '18 Gupta et al., P.R. D98 (18) 034503 5)
- Alexandrou et al., P.R. D95 (17) 114514; (E) P.R. D96 (17) 099906 **ETMC '17** 6)
- 7) **RQCD** '14 Bali et al., P.R. D91 (15) 054501
- 8) Green et al., P.R. D86 (12) 114509 **LHPC '12**

EIC impact on tensor charge

The reference paper

Precision Studies of QCD in the Low Energy Domain of the EIC

V.D. Burkert,¹ L. Elouadrhiri,¹ A. Afanasev,² J. Arrington,³ M. Contalbrigo,⁴ W. Cosyn,^{5,6} A. Deshpande,⁷ D.I. Glazier,⁸ X. Ji,^{9,10} S. Liuti,¹¹ Y. Oh,^{12,13} D. Richards,¹ T. Satogata,¹ A. Vossen,^{14,1} H. Abdolmaleki,¹⁵ A. Albataineh,¹⁶ C.A. Aidala,¹⁷ C. Alexandrou,¹⁸ H. Avagyan,¹ A. Bacchetta,¹⁹ M. Baker,¹ F. Benmokhtar,²⁰ J.C. Bernauer,^{7,21} C. Bissolotti,¹⁹ W. Briscoe,² D.Byers,¹⁴ Xu Cao,²² C.E. Carlson,²³ K. Cichy,²⁴ I.C. Cloet,²⁵ C. Cocuzza,²⁶ P.L. Cole,²⁷ M. Constantinou,²⁶ A. Courtov,²⁸ H. Dahivah,²⁹ K. Dehmelt,⁷ S. Diehl,^{30,31} C. Dilks,¹⁴ C. Djalali,³² R. Dupré,³³ S.C. Dusa,¹ B. El-Bennich,³⁴ L. El Fassi,³⁵ T. Frederico,³⁶ A. Freese,³⁷ B.R. Gamage,¹ L. Gamberg,³⁸ R.R. Ghoshal,¹ F.X. Girod,¹ V.P. Goncalves,^{39,22,40} Y. Gotra,¹ F.K. Guo,^{41,42} X. Guo,⁹ M. Hattawy,⁴³ Y. Hatta,⁴⁴ T. Hayward,³⁰ O. Hen,⁴⁵ G. M. Huber,⁴⁶ C. Hyde,⁴³ E.L. Isupov,⁴⁷ B. Jacak,³ W. Jacobs,⁴⁸ A. Jentsch,⁴⁴ C.R Ji,⁴⁹ S. Joosten,²⁵ N. Kalantarians,⁵⁰ Z. Kang,^{51,52,53} A. Kim,^{30,1} S. Klein,³ B. Kriesten,¹⁰ S. Kumano,⁵⁴ A. Kumar,⁵⁵ K. Kumericki,⁵⁶ M. Kuchera,⁵⁷ W.K. Lai,^{58, 59, 51} Jin Li,⁶⁰ Shujie Li,³ W. Li,⁶¹ X. Li,⁶² H.-W. Lin,⁶³ K.F. Liu,⁶⁴ Xiaohui Liu,^{65,66} P. Markowitz,⁵ V. Mathieu,^{67,68} M. McEneanev,¹⁴ A. Mekki,⁶⁹ J.P. B. C. de Melo,⁷⁰ Z.E. Meziani,²⁵ R. Milner,⁴⁵ H. Mkrtchyan,⁷¹ V. Mochalov,^{72,73} V. Mokeev,¹ V. Morozov,⁷⁴ H. Moutarde,⁷⁵ M. Murray,⁷⁶ S. Mtingwa,⁷⁷ P. Nadel-Turonski,⁵³ V.A. Okorokov,⁷³ E. Onyie,¹ L.L.Pappalardo,^{4,78} Z. Papandreou,⁷⁹ C. Pecar,¹⁴ A. Pilloni,^{80,81} B. Pire,⁸² N. Polys,⁸³ A. Prokudin,^{84,1} M. Przybycien,⁸⁵ J-W. Qiu,¹ M. Radici,⁸⁶ R. Reed,⁸⁷ F. Ringer,^{1,43} B.J. Rov,⁸⁸ N. Sato,¹ A. Schäfer,⁸⁹ B. Schmookler,⁹⁰ G. Schnell,⁹¹ P. Schweitzer,³⁰ R. Seidl,^{92,21} K.M. Semenov-Tian-Shansky,^{12,93,94} F. Serna,^{95,96} F. Shaban,⁹⁷ M.H. Shabestari,⁹⁸ K. Shiells,¹⁰ A. Signori,^{99,100} H. Spiesberger,¹⁰¹ I. Strakovsky,² R.S. Sufian,^{23,1} A. Szczepaniak,^{102,1} L. Teodorescu,¹⁰³ J. Terry,^{51,52} O. Teryaev,¹⁰⁴ F. Tessarotto,¹⁰⁵ C. Timmer,¹ Abdel Nasser Tawfik,¹⁰⁶ L. Valenzuela Cazares,¹⁰⁷ A. Vladimirov,^{89,108} E. Voutier,³³ D. Watts,¹⁰⁹ D. Wilson,¹¹⁰ D. Winney,^{111,112} B. Xiao,¹¹³ Z. Ye,¹¹⁴ Zh. Ye,¹¹⁵ F. Yuan,³ N. Zachariou,¹⁰⁹ I. Zahed,⁷ J.L. Zhang,⁶⁰ Y. Zhang,¹ and J. Zhou¹¹⁶

Prog. Part. Nucl. Phys. 131 (2023) 104032, arXiv:2211.15746

Invite all of you to read it !

