

dRICH test beam: results

Nicola Rubini (1)

(1) INFN Bologna 28 June 2024

4x matrices of 8x8 SiPMs 3x3 mm², total 256 channels

2 peltier cells for subzero operating temperatures

Temperature sensors both under the sensors and on the peltiers

light-weight aluminium structure

Front-end electronics featuring the ALCOR ASIC chip

Externally provided: High voltage bias for sensors, low voltage power supply for electronics, T sensors piloting and read-out

liquid heat exchange for temperature control of hot-face of peltiers

ePIC Italia national meeting

~20 cm

4x matrices of 8x8 SiPMs 3x3 mm², total 256 channels

2 peltier cells for subzero operating temperatures

Temperature sensors both under the sensors and on the peltiers

light-weight aluminium structure

Front-end electronics featuring the ALCOR ASIC chip

Externally provided: High voltage bias for sensors, low voltage power supply for electronics, T sensors piloting and read-out

liquid heat exchange for temperature control of hot-face of peltiers

Prototype

Compact solution for a ~18 cm² of active area, reading 2048 channels

ePIC Italia national meeting

CM

~20

4x matrices of 8x8 SiPMs 3x3 mm², total 256 channels 2 peltier cells for subzero operating temperatures

Temperature sensors both under the sensors and on the peltiers

ePIC Italia national meeting

4x matrices of 8x8 SiPMs 3x3 mm², total 256 channels 2 peltier cells for subzero

operating temperatures

Temperature sensors both under the sensors and on the peltiers

light-weight aluminium structure

Front-end electronics featuring the ALCOR ASIC chip

Externally provided: High voltage bias for sensors, low voltage power supply for electronics, T sensors piloting and read-out

liquid heat exchange for temperature control of hot-face of peltiers

ePIC Italia national meeting

Cm

20

6

4x matrices of 8x8 SiPMs 3x3 mm², total 256 channels

2 peltier cells for subzero operating temperatures

Temperature sensors both under the sensors and on the peltiers

light-weight aluminium structure

Front-end electronics featuring the ALCOR ASIC chip

Externally provided: High voltage bias for sensors, low voltage power supply for electronics, T sensors piloting and read-out

liquid heat exchange for temperature control of hot-face of peltiers

Prototype

ePIC Italia national meeting

CM

20

Prototype

ePIC Italia national meeting

Prototype

ePIC Italia national meeting

Disclaimer

2023:

focus on detector, electronics, sensors same beam, different detector configurations

2024:

focus on light, radiators, sensors <u>same detector configuration</u>, different beam

Experimental set-up

Experimental set-up

standard

.021

We worked on the aerogel radiator

NEW

We worked on the aerogel radiator:

- different number of tiles

ePIC Italia national meeting

standard							
.021	.021						
background							
x	background analy						
single triple							
.021	.(.021		.021		.021	
quadrupole							
021	021	1 .02		.021			

ePIC Italia national meeting

We worked on the aerogel radiator:

- different number of tiles
- different ref index

NEW

We worked on the aerogel radiator:

- different number of tiles
- different ref index
- different filters for wavelength (nm)

NEW

We worked on the aerogel radiator:

- different number of tiles
- different ref index
- different filters for wavelength (nm)

ePIC Italia national meeting

ePIC Italia national meeting

Experimental set-up

We worked on the gas radiator

NEW

ePIC Italia national meeting

Experimental set-up

ePIC Italia national meeting

Momentum scan

ePIC Italia national meeting

80

PID w/ Gas & Aerogel

10 GeV/c positive beam with no selection applied

y (mm) 10^{-1} 80 р π^+ 60 40 10 10⁻² = 20 K⁺ gas ring 0 10^{-3} -20 -40 -60 10^{-4} -80 10^{-1} 65 80 55 60 70 75 80 -80-60 -40-200 20 40 60 ring radius (mm) x (mm)

reconstructed radii at 10 GeV/c with no selection applied

ePIC Italia national meeting

PID w/ Gas & Aerogel

10 GeV/c positive beam with no selection applied

reconstructed radii at 10 GeV/c with no selection applied

ePIC Italia national meeting

Conclusions

The beam tests of October 2023 and May/June 2024 were very successful.

We are moving forward in the electronics, sensors and light characterisation for a deeper understanding of the detector.

A LOT of data has been taken, if you wish to help there is plenty of room to join the data analysis task force

Thank you to everyone that helped in the beam test!

Thank you! Any questions?

ePIC Italia national meeting

Back-up

nicola.rubini@bo.infn.it - Nicola Rubini

NEW

Experimental set-up

