
# An interaction tagger for the dRICH

Simone Vallarino
INFN - Sezione di Genova
28/06/24
Giornate nazionali EIC\_NET 2024





### The dRICH DAQ chain in ePIC → the throughput issue

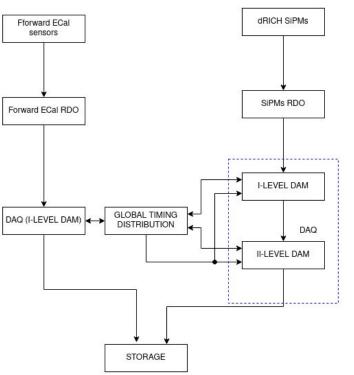


Sensors DCR: 3 - 300 kHZ (increasing with radiation damage → with experiment lifetime).

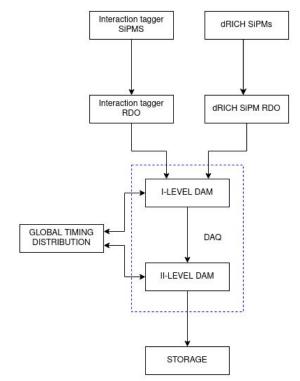
Detector throughput: 14 - 1400 Gbps.

EIC beams bunch spacing:10 ns → bunch crossing rate of 100 MHz.

For the low interaction cross-section → one interaction every ~ 200 bunches → interaction rate of 500 kHz


A system tagging the interacting bunches can solve the throughput issue.






### The dRICH interaction tagger possibilities

Based on information provided by other sub-detectors through the Global Timing Unit board.



Integrate it directly on the dRICH, adding few RDO and scintillating fibers layers.







### The internal interaction tagger option

It could be directly integrated into the dRICH mechanical structure;

Only few cm of the detector width will be occupied

Only few cm of the detector width will be occupied

It could use the same front-end boards, providing a stand-alone working system;

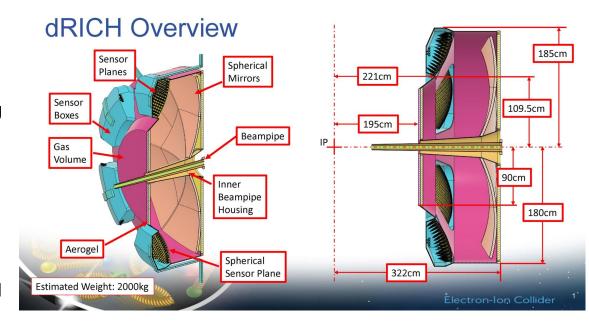
It naturally fits into a steaming readout chain, avoiding complex online — information transmission between the same level of different detectors;

Being a triggerless experiment is one of the ePIC cornerstone

See the A. Lonardo talk

It could provide quick, minimal information on particle track, helping the signal/noise discrimination that will occur in the FPGAs;






#### How could it be designed?

The interaction tagger could be made by adding some Scintillating Fibers (SciFi) layers, forming a grid in front of the detector entrance cap. The area it needs to cover is the same as that covered by the aerogel  $\rightarrow$  Disk with 100 cm  $\varnothing$ 

A very preliminary idea of design could include:

- 2 layers consisting of 1000 SciFi with
  1.5 m length and 0.5 cm ∅;
- SciFi: attenuation length ~ 4 m, rising edge ~ 100 ps, and hit duration ~ 10-20 ns;
- SciFi optical coupled with optical fibers to bring light to SiPMs;
- Two-sides read → 4000 SiPMs & 4000 channels;
- 256 channels for RDO →need to add 16 RDO.







### Summary

- One interaction tagger system is needed to make the ePIC dRICH sustainable;
- The internal interaction tagger option has the clear advantage of providing a complete detector that is not dependent on the rest of the experiment; moreover it can provide quick additional information like a sort of particle tracking;
- The same Front-End electronic and DAQ chain of the dRICH could be used for the tagger;
- Introducing the internal tagger will affect the dRICH design minimally because it will only require a few centimeters of width in the entrance cap.

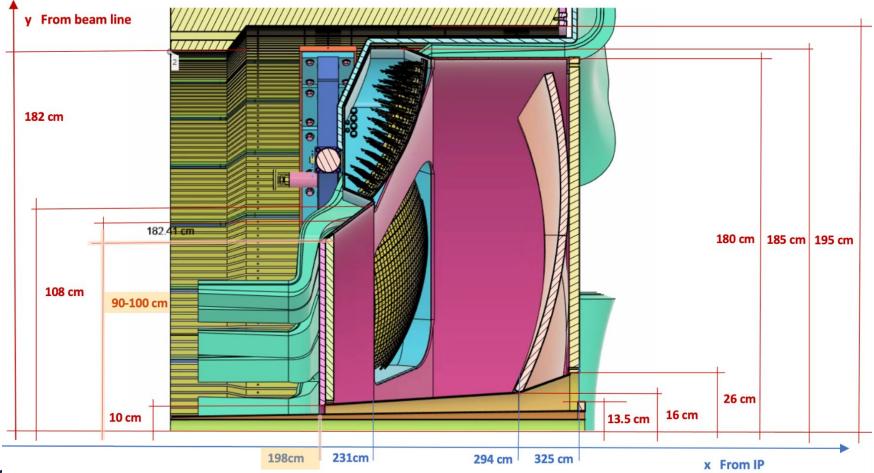
#### Well, this sounds interesting, but:

- A deeper understanding of the background rate spatial distribution and energy spectrum is needed to provide the precise design and the expected performance of the interaction tagger;
- The impact of introducing some SciFi layers needs to be evaluated through the simulation;
- This option must be submitted and approved by the ePIC collaboration before more resources are invested in developing it.





## Thank you






## Backup slides









