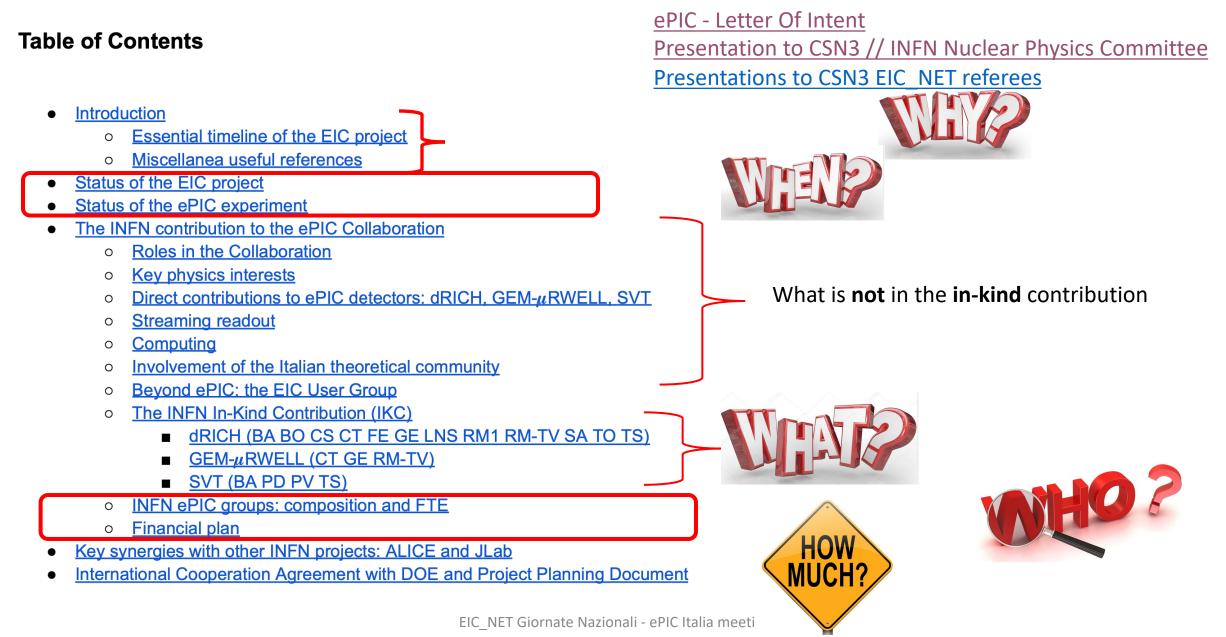

Data 7/06/2024

Validità

Final

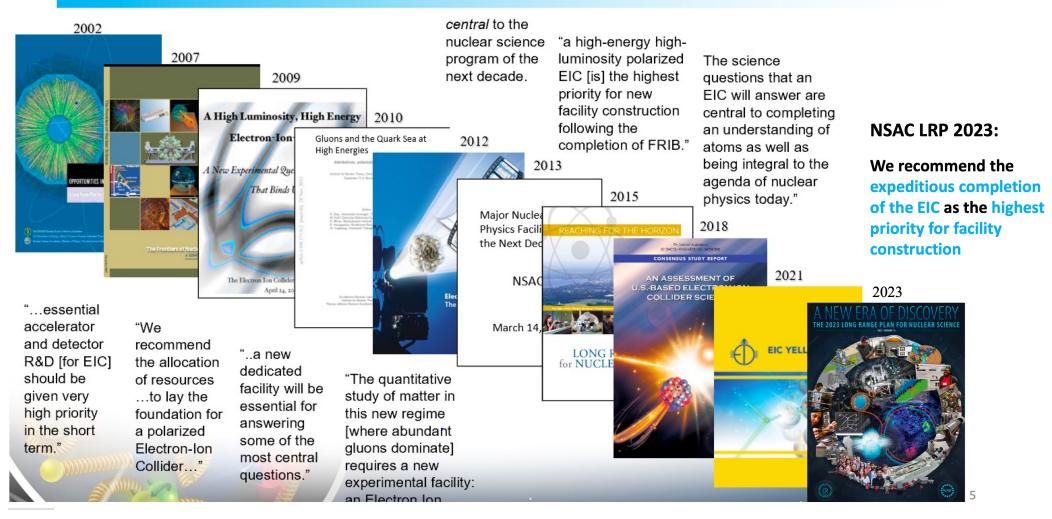
Rev

1.0



"provide status and useful references"

VI Giornate Nazionali EIC- I Meeting ePIC Italia 27-28/7/2024


This talk is not about our letter of intent

> 20 years long pathway!

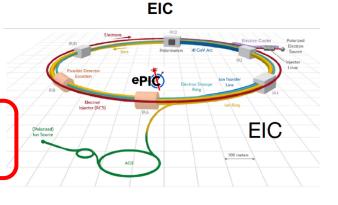
Credits: This slide from S. Fazio. talk at "Second workshop on advancing the understanding of non-perturbative QCD using energy flow", 6-9 Nov 2023 - SBU

The only new accelerator in the next decade

EIC_NET Giornate Nazionali - ePIC Italia meeting

NuPECC Long Range Plan (to be issued in 2024)

Recommendations for Nuclear Physics Infrastructures


EIC NET Giornate Na

A special thanks to "our" members in the LRP process: PA, A. D'Angelo, ,S. Dalla Torre, M. Radici and many others from the large European EIC community

• Collaboration with non-European infrastructures should be fostered in all areas of nuclear research to seize unique scientific opportunities and synergies that complement scientific programmes based in Europe. In particular, European participation in the construction of ePIC at the future international flagship facility EIC is recommended.

"First time to my knowledge a non-European infrastructure is recommended at this level in the NuPECC Long Range Plan"

D. Bettoni at EIC RRB, May 2024

Recommendations for Hadron Physics

• Future flagship facilities and experiments

We recommend the expedited realisation of the antiproton experiment PANDA, and the support of European groups to contribute to the electron-ion experiment ePIC. By virtue of their different beam species and energy regimes, PANDA and ePIC will explore complementary physics aspects. In a ten-year perspective, these two next-generation experiments must be made ready to launch.

 PANDA: The physics program, including the prospect of unravelling exotic matter, remains unique and compelling. PANDA will strengthen the European position on the global scene and act as a unifying force for the community. Therefore, we recommend support for its construction and for the development of instrumentation, software and analysis tools.

 ePIC: Here, European researchers will be able to explore unknown features of quarks and gluons inside nucleons and nuclei. We recommend supporting the participation of European groups in ePIC and reinforcing scientific and technological activities which synergize with European projects.

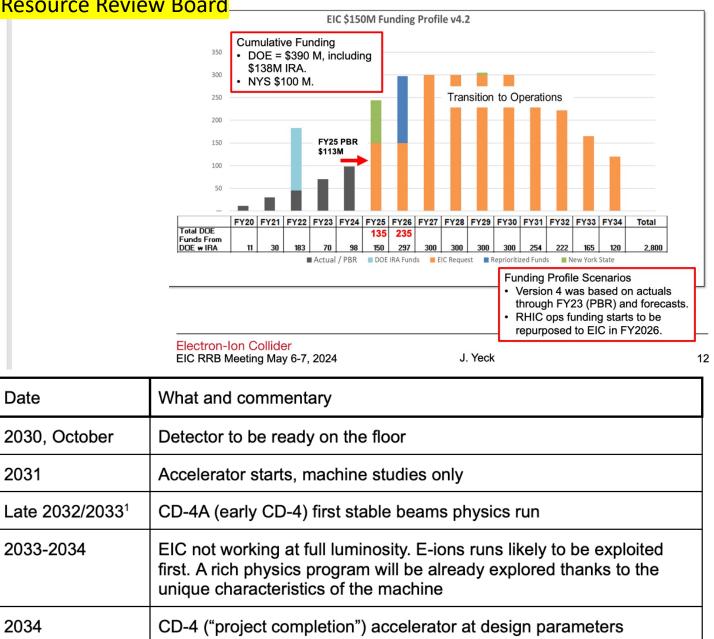
Status of the EIC project

Jim Yeck at 6-7 May EIC Resource Review Board

Date

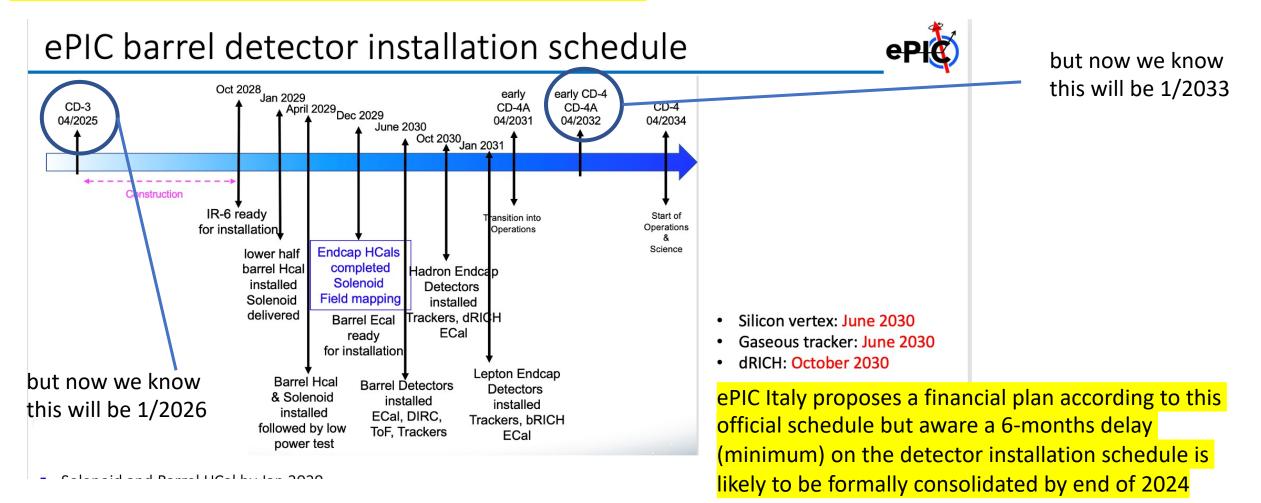
2031

2034


EIC NET G

EIC Project Planning Snapshot

- CD-1 Alternative Selection and Cost Range= \$1.7-2.8B
- Current TPC Point Estimate = \$2.78B
- Plan for Critical Decision Approval Milestones (Funding Dependent)
 - Mar 2025 CD-3B, Long-Lead Procurement (Plan)
 - End 2025 CD-2/3, Performance Baseline/Construction Start (Target)
 - The goal is CD-2/3 before RHIC concludes in 2025
 - CD-3A,B,C,...enables procurement, not construction
 - **CD-3 Start of Construction** 2026
 - 2033 CD-4 Start of Operations (Early Finish)
 - 2035 **CD-4 Start of Operations**



Status of the EIC project (2)

ePI

This was shown at December 2023 RRB, not yet formally changed

Last updates from the project

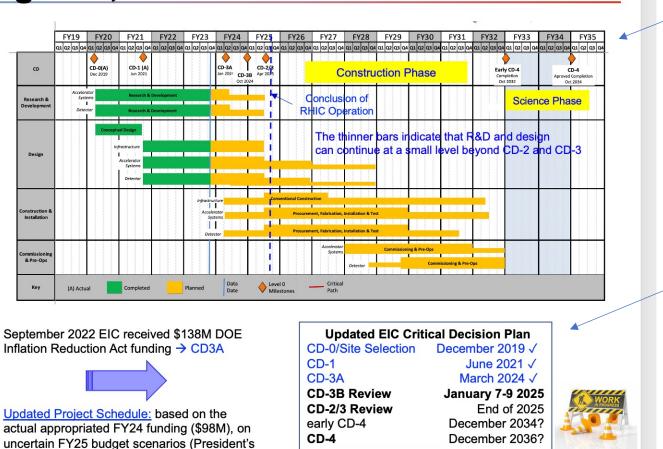
EIC Schedule – best guess, dates still under discussion ^{R. Ent}

Budget is only ~\$113M)

CD-3A:

Approve start of long-lead procurements CD-3A items passed final design review All interfaces related to them are frozen Waiting for ESAAB meeting for authorization

CD-2:


Approve prelim. design for all subdetectors Design Maturity: >60% Need "pre-"TDR (or draft TDR) Baseline project in scope, cost, schedule

CD-3:

Approve final design for all subdetectors Design Maturity: ~90% Need full TDR

Current EIC Critical Decision Plan		
CD-0/Site Selection	n December 2019 √	
CD-1	June 2021 √	
CD-3A	ESAAB March 25 th 2024	
CD-3B	October 2024	
CD-2/3	April 2025	
early CD-4	October 2032	
CD-4	October 2034	

Electron-Ion Collider ePIC biweekly meeting June 14, 2024

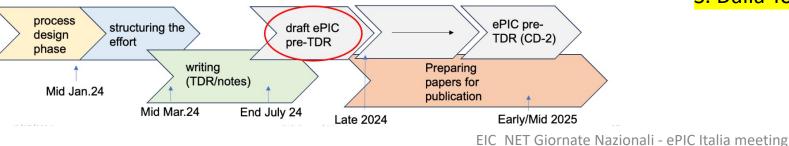
This is still the official old one

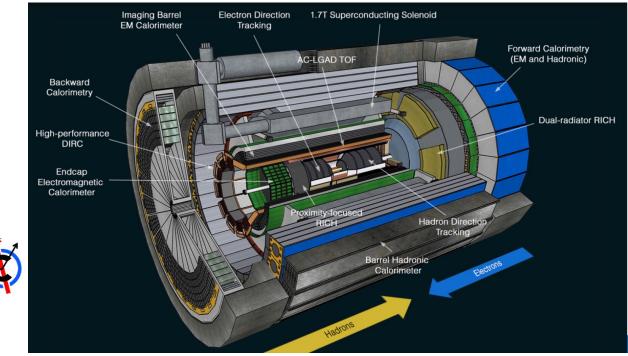
This is Rolf/Elke current best guess Note on the meaning of CD-4A... collisions in 2033 early 2034 anyway...

If this "guess" would be confirmed, ePIC – INFN spending profile might be further flattened

CSN3 chair request: to make things flatter we need to spend already since next year

EIC_NET Giornate Nazionali - ePIC Italia meeting


Status of the ePIC experiment



- ePIC will contribute to EIC pre-TDR for CD-2 in 2024, with "repeated cycle" in 2025 (for final TDR)
- UK, France and Italy expected to formalize IKC by end of 2024
- draft pre-TDR by end of 2024, pre-TDR (for CD-2) in 2025
 →Silvia's talk

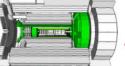
TDR Strategy and Publications

- In 2024 the ePIC collaboration will produce:
 - The ePIC contributions to the EIC TDR
 - The EIC TDR is the top priority
 - Chapters on Physics Goals and Requirements and Experimental Systems
 - Not just the document, but the simulations and detector R&D that form the basis
 Requires close cooperation between the collaboration and the project!
- An ePIC Detector Design paper:
 - Derived and expanded from the Experimental Systems TDR chapter
- An ePIC Physics Performance paper:
 - Derived and expanded from the Physics Goals and Requirements TDR chapter
- Both to be published in a scientific journal (such as NIMA, JINST, or PRC)
- These publications will serve as a focus in developing the ePIC Membership and Publication policies.

A recent and comprehensive full seminar about ePIC: S. Dalla Torre CERN Detector Seminar (24th May 2024)

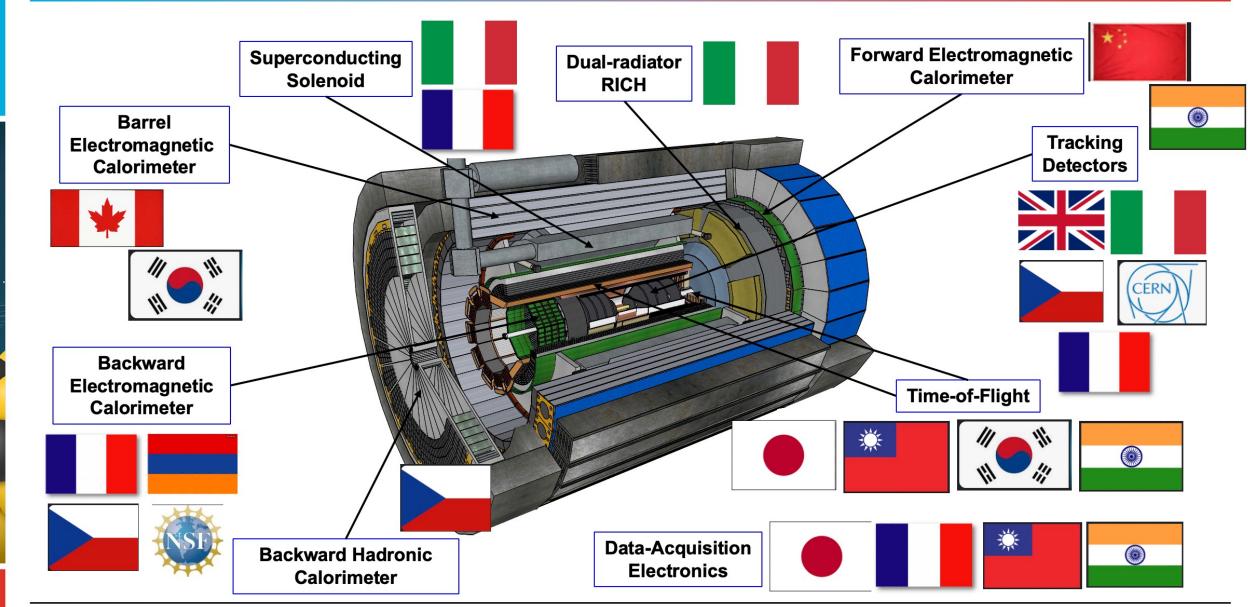
4

ePIC Tra	cking Dete	ectors				
μ Vertex Tracker	Barrel Tracker	Outer Barrel M	PGD Tracker	Endcap	Tracker	
		MicroMegas Tracker		MAPS Disks	μRWELL Disks	-
Excellent momentum and spatial resolution Displaced vertex reconstruction		Provide redundancy and pattern recognition for tracking	Tracking close to hpDIRC detector to improve angular and space point resolution. Redundancy and pattern recognition for tracking	Excellent momentum 0.05 $(0.10)\% \text{ pT} \oplus 1.0 (2.0)\%$ and spatial resolution $30\mu\text{m/pT} \oplus (20 - 40) \mu\text{m}$	Provide redundancy and pattern recognition for tracking	
Monolithic Active Pixel Sensor → ALICE ITS3 MOSAIX sensor (65 nm) small pixels (~18 mm) and power consumption (<20 mW/cm ²)		Proven Te Cylindrical resistive Micromegas technology Used: ATLAS NSW, CLAS12, SPHENIX, MINOS& T2K TPC	chnology			
	EIC Large Area Sensor (LAS), modification of ITS3 sensor with 5 or 6 RSU forming staves as the basic building elements for the Outer Barrel		rst at epic 24 planar Thin-gap & double amplification (GEM & µRWELL) modules & 2D-strip readout	EIC Large Area Sensor (LAS), staves as the basic building elements for the MAPS disks	GEM- μRwell hybrid configuration with increase gain	d
Electron-Ion Collide	er 📕	Up to 520 mm (No RSU overlap)	auer & R. Ent		5	

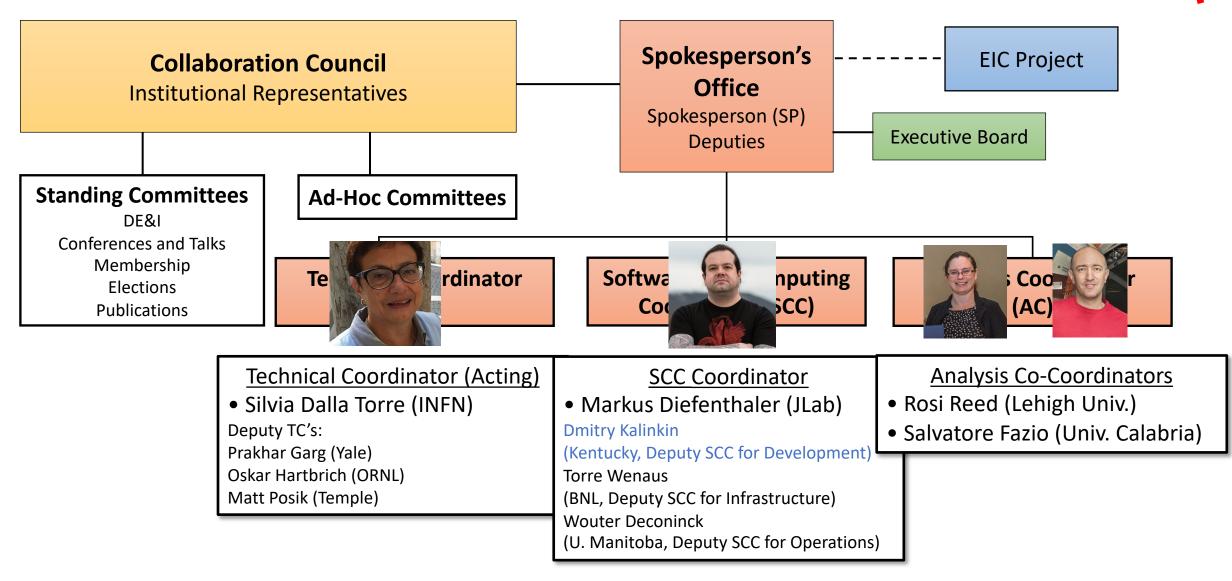

ePIC Calorimetry

	or million y				
Backward ECal	Barrel ECal	Forward ECal	Backward HCal	Barrel HCal	Forward HCal
	AstroPic: silicon sensor with 500x500µm² pixel size developed for the Amego-X NASA mission ScFi Layers with two-sided SIPM readout				Swer aft
scattered lepton detection → very high-precision	scattered lepton and γ detection, hadronic final state characterization	Main F lepton and γ detection, hadronic final state characterization $\rightarrow \pi^0$, γ separation	Function muon and neutral detection → improved jet Energy reconstruction	muon and neutral detection → improved jet Energy reconstruction	particle-flow measurements
PbWO4 – crystals → long lead procurement	Pb/SciFi sampling part using SiPMs combined with imaging section (6 layers) interleaving Pb/SciFi with ASTROPIX	Proven T Tungsten-powder + SciFi SPACAL design Developed through EIC R&D and applied successfully in sPHENIX	Fechnology Steel + Scintillator SiPM-on-tile	Steel + Scintillator design re-used from sPHENIX	longitudinal segmented Steel + Scintillator SiPM-on-tile Pioneered by CALICE analog HCal High resolution insert next to beam-pipe
SiPM as Photonsensors	Use of ASTROPIX in Calorimetry	world's fi	irst at epic		first-time full-size CALICE like calorimeter in collider experiment

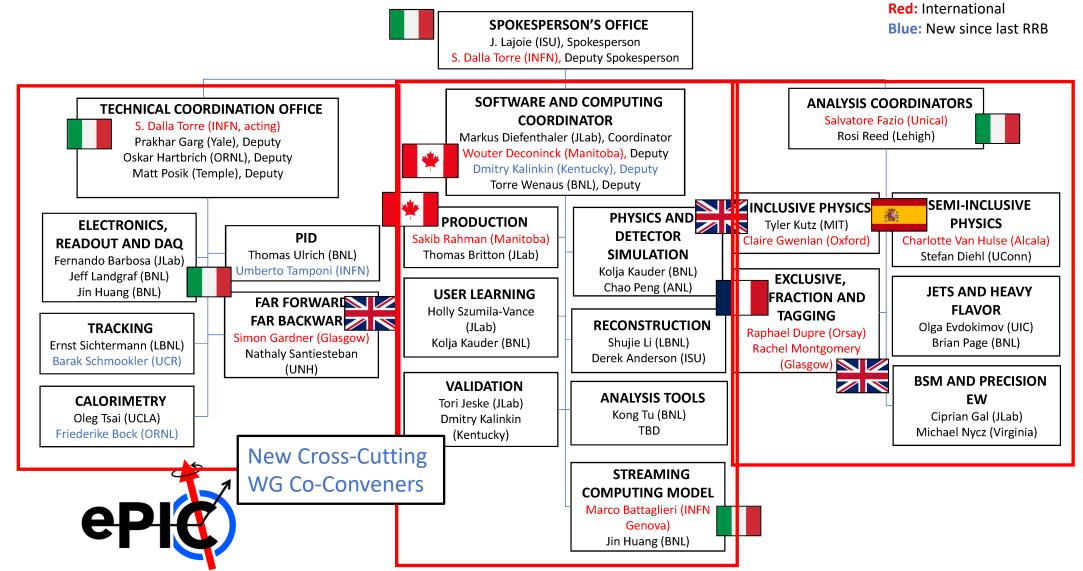
Electron-Ion Collider


EIC RRB Meeting May 2024

ePIC Particle Identification Detectors

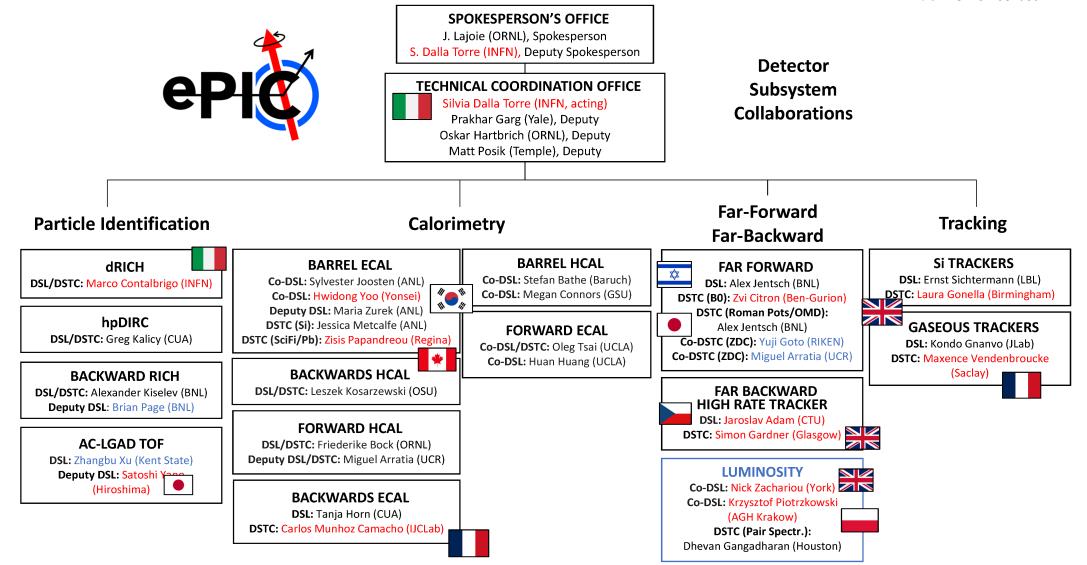

Backward RICH	Barrel DIRC	Forward RICH	Time-of-Flight (Barrel, Forward)
aerogel container acrylic filter inner conical mirror HRPPD sensor plane outer conical mirror vessel		P=1.5 Former Cas Solare Free	Barrel TOF: R < 0.64 m L=2.4m Forward TOF: Front face R < 0.67 m C < 10cr
	Main Fu	unction	
 e, π, K, p separation → π/K 3σ sep. up to 9 GeV/c and 10-20 ps timing → ToF 	 e, π, K, p separation → π/K 3σ sep. at 6 GeV/c 	 e, π, K, p separation → π/K 3σ sep. up to 50 GeV/c 	• e, π , K, p separation through 20-35 ps ToF Barrel: 0.15 < p _T < 1.5 GeV/c Forward: 0.15 < p _T < 2.5 GeV/c • Accurate space point for tracking
	Proven ⁻	Technology	
Classical single volume proximity focusing aerogel RICH with long proximity gap (~30 cm)	 High Performance DIRC Quartz bar radiator → Reuse of BaBAR DIRC bars light detection with MCP-PMTs Fully focused 	 Dual Radiator RICH Aerogel and C₂F₆ gas Spherical Mirrors (6 Azimuthal Sectors) Photon-Sensors tiled on spheres 	
	world's fi	rst at epic	
Photonsensors: HRPPDs for Time-of-Flight		First use of SiPMs as Photonsensors in a RICH	First time use of AC-LGAD (Low Gain Avalanche Detector) in collider detector

Central Detector Non-DOE Interest & In-Kind

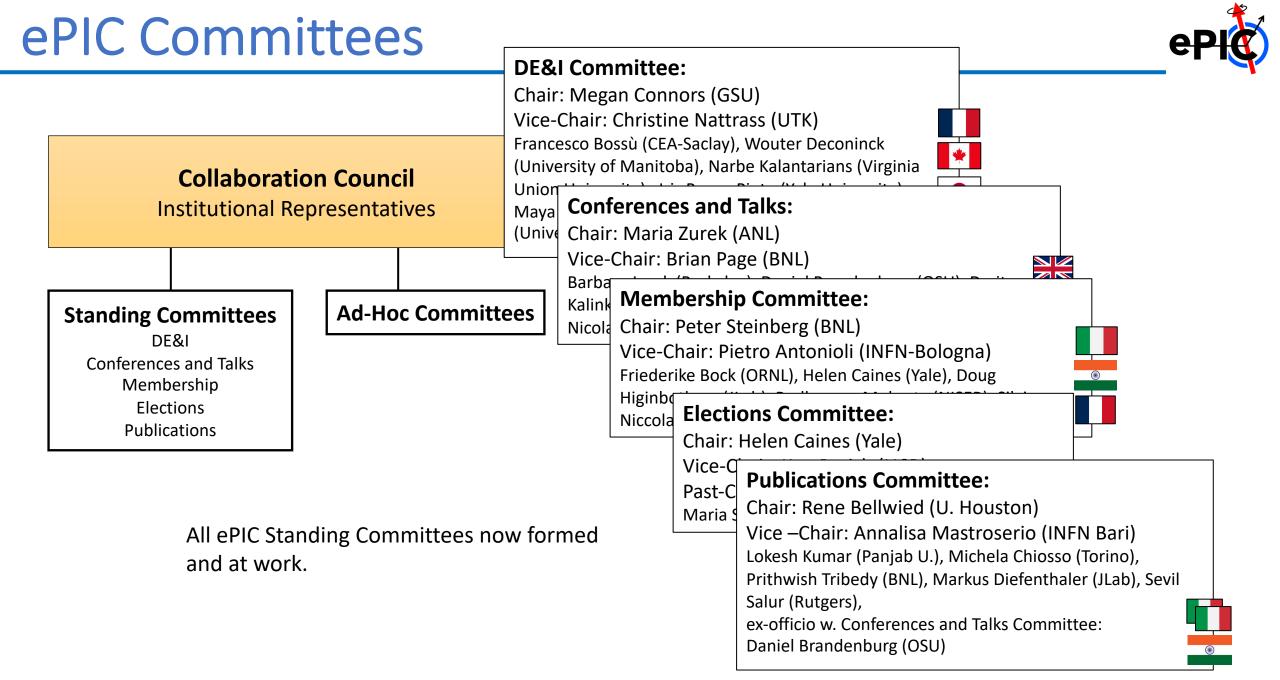

Electron-Ion Collider EIC RRB Meeting May 2024

ePIC Collaboration Structure

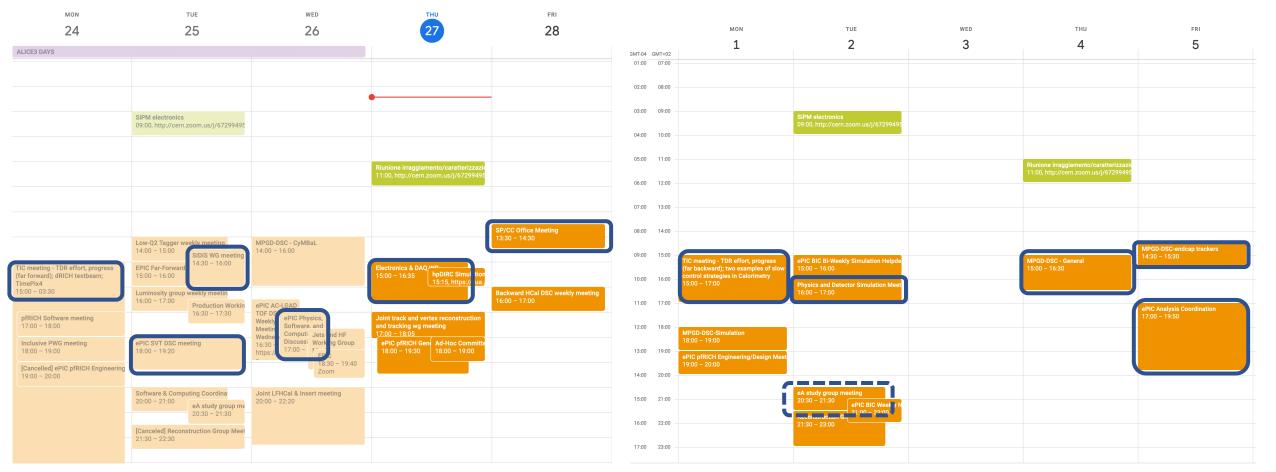
ePIC Working Group Structure



EIC_NET Giornate Nazionali - ePIC Italia meeting


ePIC DSC Structure

Red: International Blue: New since last RRB



EIC_NET Giornate Nazionali - ePIC Italia meeting

ePIC is already a "running" experiment...

Link to <u>ePIC Italy</u> Calendar (it should be used more by µRWELL, SVT... and generally all!)

Link to <u>ePIC</u> Calendar

ePIC has already plenty of mailing lists

ePIC

https://lists.bnl.gov/mailman/listinfo

<u>Eic-projdet-background-l</u>	[EIC-ePIC-Background-WG]
<u>Eic-projdet-bsmew-l</u>	[EPIC-BSM-EW-WG]
<u>Eic-projdet-calo-l</u>	[EPIC-Calo-WG]
<u>Eic-projdet-calo-pemcal-l</u>	EIC Project h-endcap EMCal
<u>Eic-projdet-collab-l</u>	[EPIC-Collaboration]
<u>Eic-projdet-compsw-l</u>	[ePIC Software & Computing]
<u>Eic-projdet-conveners-l</u>	[EPIC-Conveners]
<u>Eic-projdet-cpid-l</u>	[EPIC-CerPID-WG]
<u>Eic-projdet-daq-l</u>	[EPIC-DAQ-WG]
<u>Eic-projdet-drich-l</u>	ePIC dRICH mailing list
<u>Eic-projdet-earlycareer-l</u>	[EPIC-Early Career]
<u>Eic-projdet-erd107-l</u>	EIC Project eRD107 Hadronic Calorimetry Consortium
<u>Eic-projdet-excldiff-l</u>	[EPIC-ExclDiff-WG]
<u>Eic-projdet-farback-l</u>	[EPIC-FarBack-WG]
<u>Eic-projdet-farforw-l</u>	[EPIC-FarForward-WG]
<u>Eic-projdet-globalint-l</u>	[EPIC-GlobalInt-WG]
<u>Eic-projdet-hpdirc-l</u>	hpDIRC DSC mailing list
<u>Eic-projdet-inclusive-l</u>	[EPIC-Inclusive-WG]
<u>Eic-projdet-jethf-l</u>	[EPIC-JetHF-WG]
Eic-projdet-pfrich-electronics-l	ePIC pfRICH electronics mailing list
<u>Eic-projdet-pfrich-l</u>	ePIC pfRICH mailing list
<u>Eic-projdet-pfrich-mechanical-design-l</u>	ePIC pfRICH mechanical design mailing list
<u>Eic-projdet-pfrich-software-l</u>	ePIC pfRICH software mailing list
<u>Eic-projdet-pid-l</u>	The ePIC PID detector list
<u>Eic-projdet-pwg-conveners-l</u>	[no description available]
<u>Eic-projdet-sc-l</u>	[EPIC-SteeringGroup]
<u>Eic-projdet-semiincl-l</u>	[EPIC-SemiIncl-WG]
<u>Eic-projdet-simqa-l</u>	[EPIC SimQA WG]
<u>Eic-projdet-tic-l</u>	[no description available]
<u>Eic-projdet-tofpid-l</u>	[EPIC-ToFPID-WG]
<u>Eic-projdet-tracking-l</u>	[EPIC-Tracking-WG]
Eic-proidet-trk-recon-l	[EPIC-TrkRecon]

Epic-backward-hcal-l	[no description available]
Epic-bemcal-l	[no description available]
Epic-cc-membership-committee-l	[no description available]
<u>Epic-sc-faq-l</u>	[no description available]
Epic-svt-l	Mailing list for the ePIC SVT DSC
<u>Epic-svt-uk-l</u>	UK regional ePIC SVT discussion list
Epic-talks-l	[no description available]
Epic-website-l	[no description available]

Please subscribe!

And check with your responsabile locale if you are registered as ePIC member (Institution representative must communicate to Collaboration Chair.

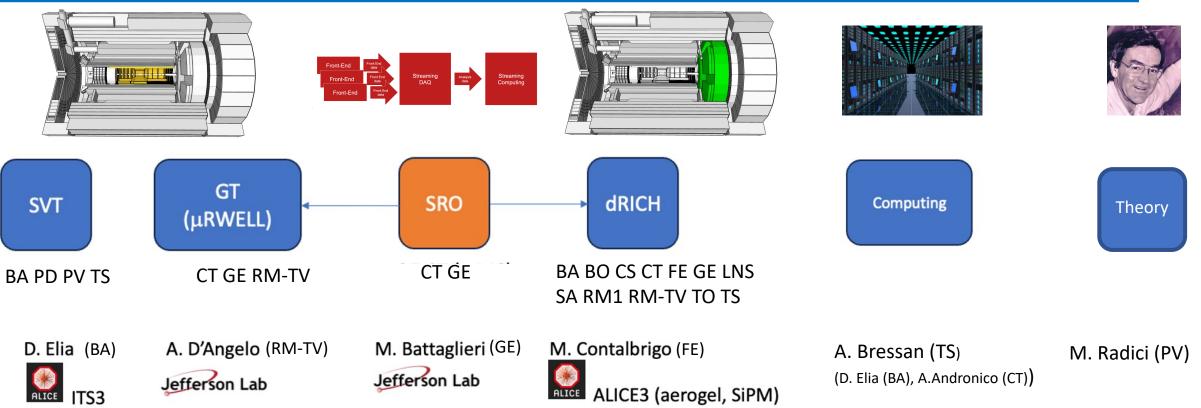
Existing eic_net_* mailing lists will be **migrated or deleted** during the Summer, ePIC_italy mailing list will replace eic_net_all we expect epic_* mailing list by detectors + two general (with one restricted to staff) + all the ones needed (ex. electronics, irradiation, ...). INFN lists will be restricted to ePIC Italy members (with usual exceptions for technicians, tecnologi and undergraduate students when needed)

and we have two Indicos as well

Create event -

Q

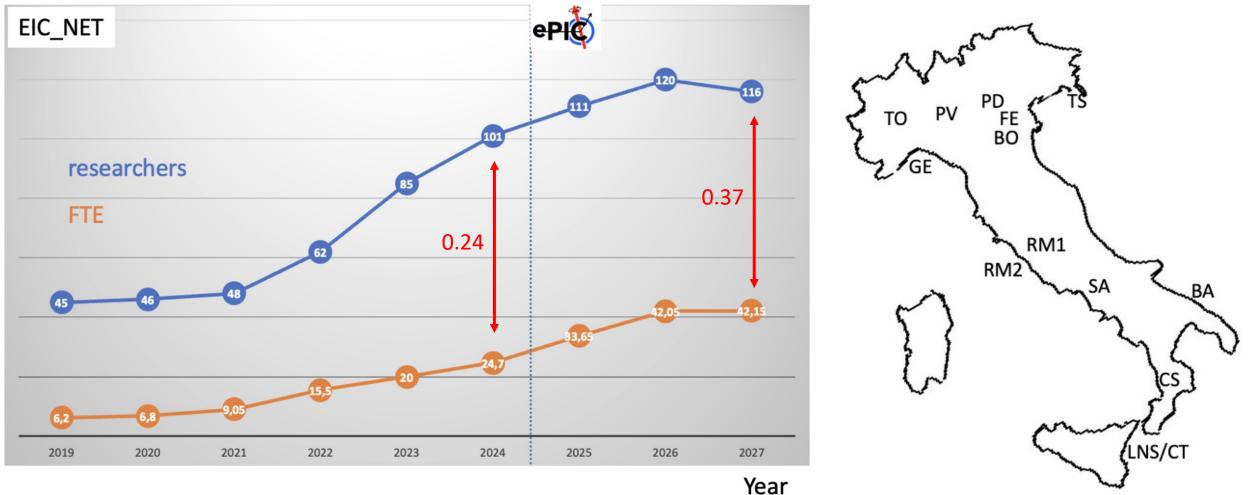
https://agenda.infn.it/category/1147/ EIC_NET Enter your search term Create event ~ ② Naviga Simulation and Physics Performance 52 events Collaboration Council


Simulation and Physics Performance	52 events	
Miscellanea	1 event	
Giornate Nazionali	6 events	
Incontri con i referee	7 events	
Comitato EIC Italia	16 events)
dRICH	111 events	
EIC_NET General Meetings	11 events	
EIC School	1 event	
EIC School Organising Committee	14 events)

Collaboration Council 9 events		
Collaboration Committees 15 events		
Collaboration Meetings 4 events		
Early Career 1 event		
Spokesperson's Office 129 events	٢	
General Meetings 46 events		
Detector 1,357 events		
Software and Computing 602 events		
Analysis 222 events		
Miscellaneous 81 events		
SP/CC Office Meetings 3 events		

Enter your search term

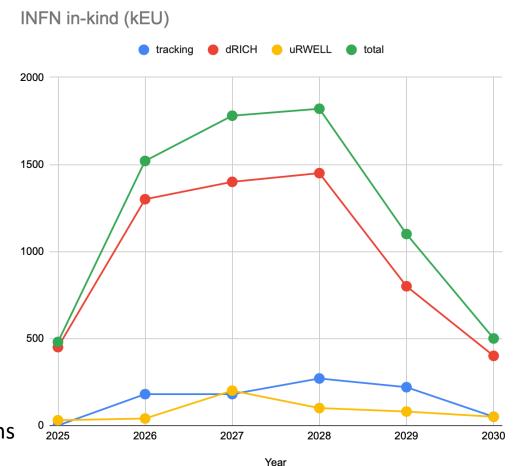
ePIC Italy (and beyond) at a glance



Domenico Elia (BA) is our INFN PI-elect, Domenico will replace Pietro, effective 1st Nov 2024

And don't forget EIC User Group (chair: M. Radici (PV), M. Ruspa (TO) also in EICUG SC): <u>https://eicug.org</u> fundamental link with theory community + other common stuff (MC generators, lobbying, AI...)

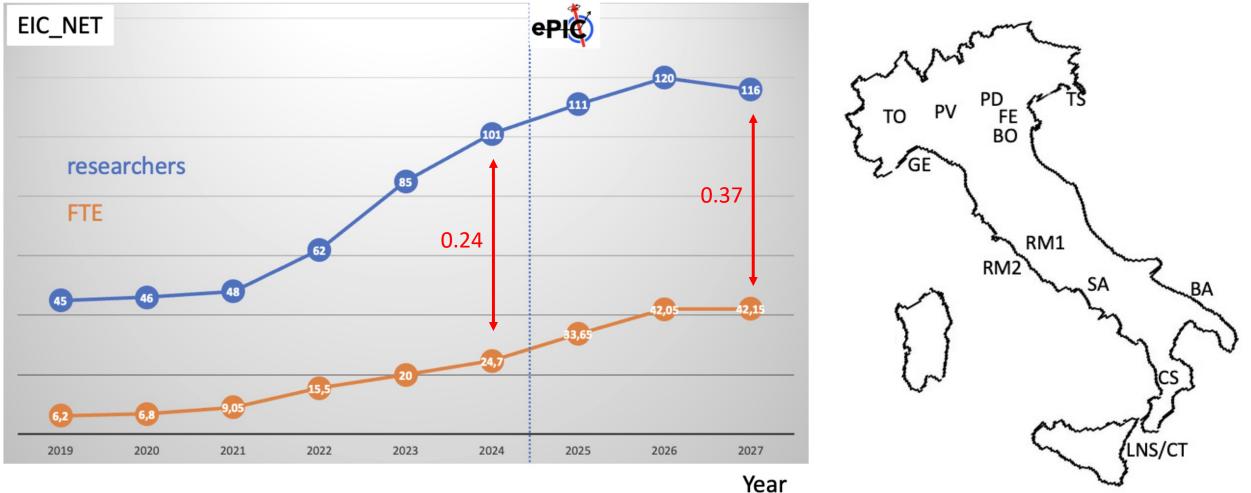
ePIC Italy (who we are and how we plan to grow)


- 14 INFN units: the largest "cluster" within CSN3
- steady growth consistently with the project, capacity to attract also from other CSN
- **solid(*)** 3-year projections

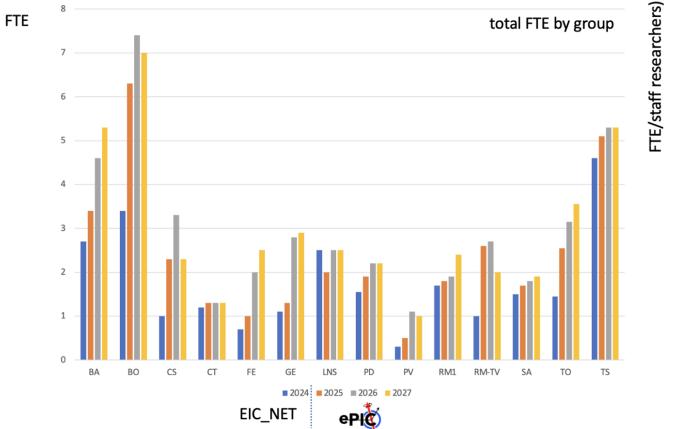
(*) no senior associations, only contracts assigned or under recruitment EIC_NET Giornate Nazionali - ePIC Italia meeting

The INFN IKC

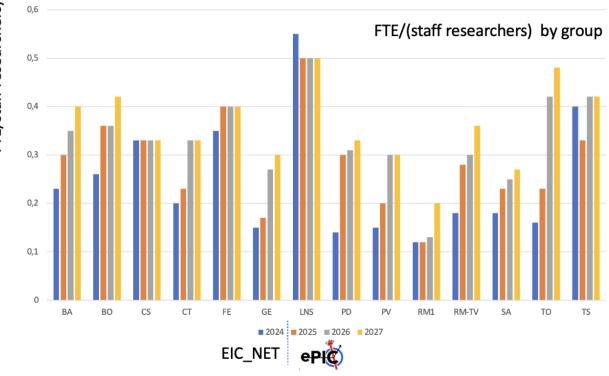
	INFN In-Kind (kEU)				
Year	SVT	dRICH	uRWELL	TOT	
2025	0	450	30	480	
2026	180	1300	40	1520	
2027	180	1400	200	1780	
2028	270	1450	100	1820	
2029	220	800	80	1100	
2030	50	400	50	500	
	900	5800	500	7200	
	Total IK	C (EU)	7200		


- effort to avoid peak as much as possible (SVT vs dRICH)
- details on what is behind in dRICH, <u>SVT</u> and <u>GEM-μRWELL</u> presentations
- 2025 big item is ALCOR ER
- if at the end of this year the requirement of detector on the floor is moved to Oct. 2031 (instead of Oct. 2030) we can reasonably expect to avoid current peak in in 2027-2028
- **CSN3 input: need to spend!!** Even if there is a delay we should try to spend "consistent sum" already in 2025

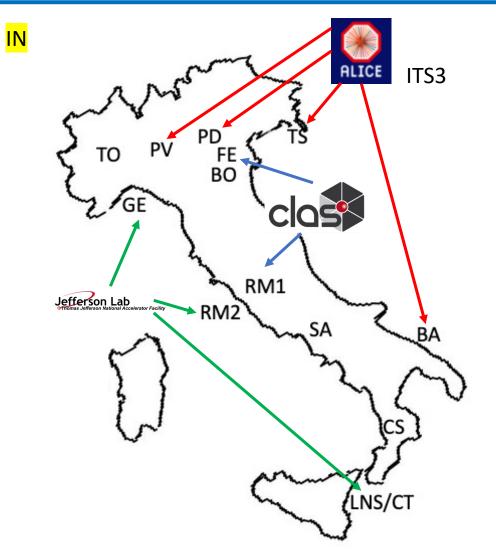
Organization and FTE



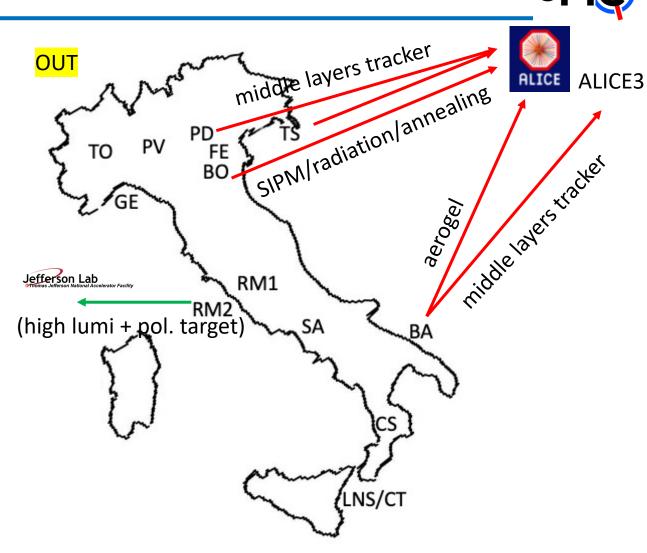
- 14 INFN units: the largest "cluster" within CSN3
- steady growth consistently with the project, capacity to attract also from other CSN
- **solid(*)** 3-year projections


(*) no senior associations, only contracts assigned or under recruitment

FTE by group

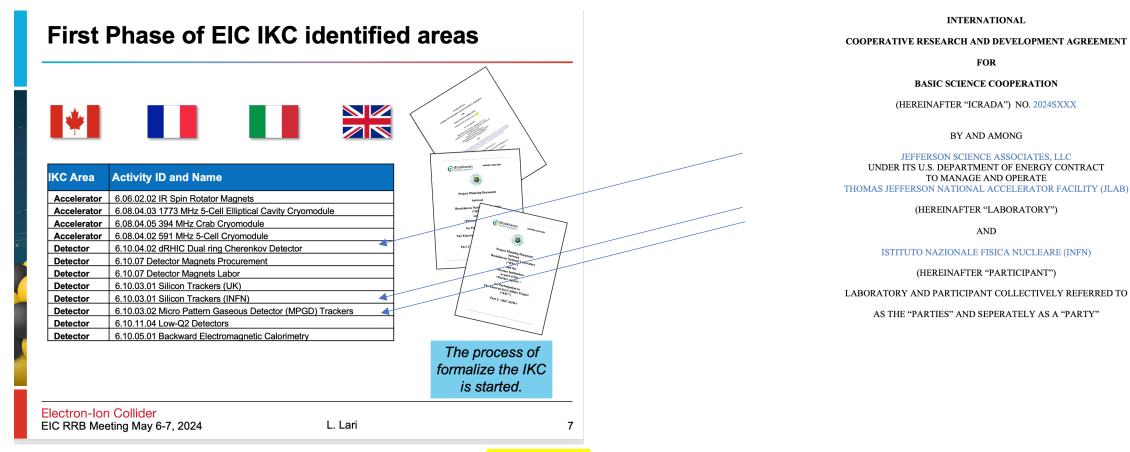


- all groups are growing
- 1.0 FTE threshold passed by all but one in 2025
- high engagement by RN and RL



- note on small Jlab groups and missions for shifts passed to INFN common referees
- what next? End of LHC Run3, and other stuff

Synergies


(plus expertise coming from ATLAS, BELLE, CMS ' COMPASS/AMBER, DARKSIDE, JUNO, NA62, STAR)

(plus ALCOR (TO) to be used in DUNE + IBIS_NEXT)

ICRADA and PPD

ICRADA to be signed by end of 2024 PPD to follow in 2025 (by June , for CD-2)

<mark>ANNNEX A</mark>

This collaborative project between JLab and INFN involves the design, procurement, fabrication and testing of key components of various sub-systems for the EIC detector, including the forwardregion dual Ring Imaging Cherenkov (dRICH) particle identification detector, the inner three layers of the Silicon Vertex Tracking (SVT) detector, and the forward-region GEM-muRwell tracking detector disks. Some miscellanea notes and this meeting

Invest in young generations

- Importance to share/accompanying our juniors (Mariangela and Simone are two good examples!)
- Initiatives as EIC European School are fundamental. Remember CFNS school every year
- Remember INFN-DOE Summer Student program
- INFN CSN3 "borse" for bachelor/master/just graduated students
- Importance to secure funds to travel in US

We need to make a step on physics performance studies

See dRICH/SVT/GEM-mRWELL sessions to learn about group activities

Some miscellanea immediate important coordination items:

- computing (\rightarrow with G. Carlino)
- upcoming DOE reviews (PDR and FDR) see backup
- "interaction tagger" and integration of RM1-RM2 work in dRICH workflow
- (obviously preventivi) ightarrow tomorrow
- (obviously applications for eRD/PED funds) \rightarrow tomorrow

See S. Fazio + M. Radici (+ L. Pelizzi /S. Kumar) talk

See D. Elia, M. Contalbrigo, A. D'Angelo talks

See S. Vallarino A. Lonardo talks

See S. Donati and M. Ruspa talks

Next ePIC Collaboration Meeting

- Lehigh University Bethlehem, PA
 - July 22-28th
 - Hybrid format
- Jointly organized with the EICUG
- Joint EICUG/ePIC session with talks of common interest
- Mixed workfest and plenary sessions

https://indico.bnl.gov/event/20727/

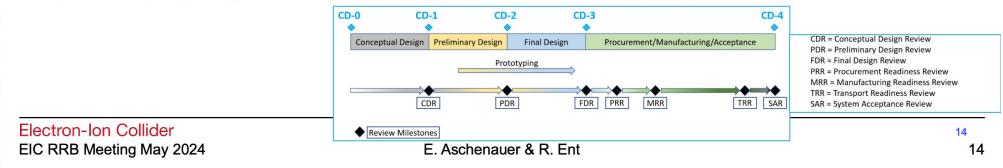
(18 people from INFN attending from BA BO CS CT FE GE PV RM1 RM-TV TO TS)

exciting time to be an

- right time to move to "experiment sigla" with multi-year committment by INFN (ICRADA by end of the year)
- 6 years of R&D are repaying in terms of responsibilities and roles in the ePIC experiment
- large (14 units, O(50) FTE) CSN3 initiative for the decade to come
- INFN well positioned in major hadron physics experiment in the '30s

January 2025 Collaboration Meeting

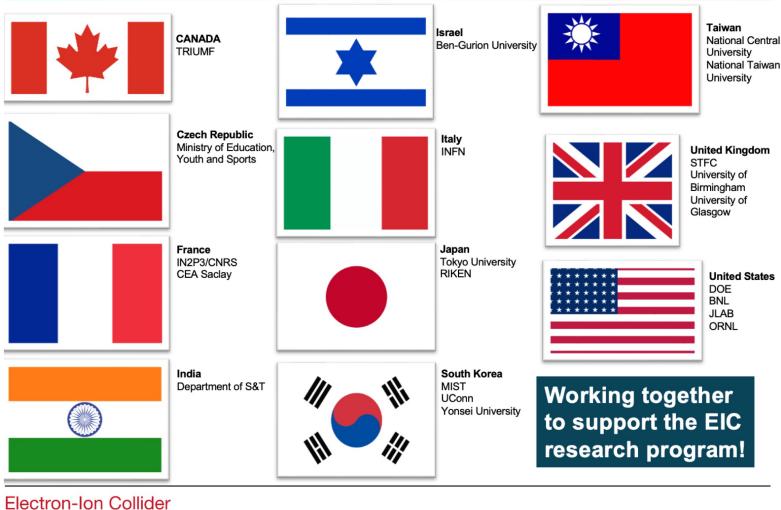
- After very careful consideration by the CC Office, Executive Board, and the Coordinators, we have decided to accept the proposal from <u>University of Rome Tor Vergata & INFN</u> to host the January 2025 ePIC Collaboration Meeting.
 - University of Rome Tor Vergata & INFN
 - Via Frascati (Roman Hills)
 - Trains from Fiumicino Airport and Roma Termini
 - Villa Mondragone
 - Rooms available at 3-4 star hotels in Frascati
 - Conference fee covers coffee breaks, lunches, shuttle buses:
 - Remote participants and students fee waived (up to 20%)
 - Minimum 100 in-person attendees
 - Social dinner (additional cost)
 - Plenary Room (160 people)
 - 3 parallel session rooms
 - AV support



EIC_NET Giornate Nazionali - ePIC Italia meeting

Path to CD-2/CD-3B and to CD-3

- Preliminary and Final Design Reviews
 - PDR2: IR Integration and Auxiliary Detectors February 12, 2024 main emphasis on baseline choices and progress Reviewers: Fulvia Pilat (ORNL), Gerrit Van Nieuwenhuizen (BNL), Wolfram Zeuner (CERN), Eugene Chudakov (JLab)
 - PDR1: Tracking Detectors March 20-21, 2024 main emphasis on baseline tracking layout, if we are on track and plans Reviewers: Andy White (UTA), Michael Begel (BNL), Maxim Titov (CEA), David Lynn (BNL), Piotr Gasik (GSI)
 - PDR2: Electronics/DAQ Early June 2024 continuation of PDR1 to ensure we are on track and show progress
 - PDR2: Particle Identification Detectors Summer 2024?
 - PDR1: Integration, Infrastructure and Installation September 2024 includes detector support structures
 - PDR2: Barrel EM Cal Summer/Fall 2024 emphasis on mechanical design & AstroPix readiness (needs {PDR before CD-2)
 - PDR2: Polarimetry timescale TBD (but before CD-2)
 - FDR: Magnet Power Supply aim for May 28, 2024 final design review for possible CD-3B scope
 - FDR: VTRx+/lpGBT included as 1/2 day in Electronics/DAQ review of early June 2024, possible CD-3B scope
 - FDR: Magnet flux return steel September 2024 included as final specifications in above PDR for possible CD-3B scope
 - FDR: Backward & Forward EM Calorimetry, Barrel & Forward HCAL Fall 2024
- Next ePIC Computing & Software review by host labs ~October 2024


Detector Non-DOE Interest & In-Kind

Entity	Interest and Important Facts
NSF	NSF-MSRI pre-proposal submitted by 10 US universities – aims at full scope of backward EM calorimetry (eECal). Armenia, Czech, France/IN2P3 as unfunded contributors. Invited to submit proposal. Moved within NSF to consider in MPS directorate. Internal NSF review completed. Pending funding decision.
CERN	MAPS sensor design developed by CERN/ITS-3 Group providing synergy with ALICE. Synergy of gaseous-based Cherenkov detectors and photon-sensors with ALICE & LHCb. Synergy of Forward AC-LGAD design with CMS endcap timing layer.
Armenia	Contributions, mainly labor to eECal and many EM calorimetry and particle id detectors component tests.
Canada	EIC included in 2022 Canadian Subatomic Physics Long-Range Plan; Interested in Barrel Electromagnetic Calorimetry, Electron Polarimeter and Software. Working on 2024 proposal.
China	Interested in Forward EM Calorimeter – working on NSF-China proposal.
Czech	Working with funding agency; Interested in eECal (PbWO4 crystals and glass), Silicon Vertex Tracker sensors and characterization, and collaboration on low-Q2 electron tagger.
France/IRFU	Interested in MPGD/racking and readout electronics including ASICs for MPGDs. Provided in-kind contributions to SC magnet design and interested to continue labor oversight during magnet construction.
France/IN2P3	International contribution to backward EM calorimetry (including in-kind design) and to readout electronics (in-kind design of two ASICs for AC-LGAD detectors and Calorimetry). IRFU & IN2P3 discussing together for higher-level contributions.
India	EIC included in 2023 Mega Science Vision Plan. Consortium is working with Funding agency; Interested in detector software (non-project scientific contribution), contributions to DAQ/slow controls and forward dRICH. Investigating further hardware contributions – forward EM Calorimeter, forward AC-LGAD, maintain possible links with Si groups and plants.
Italy/INFN	Commitment to EIC detector magnet construction scope. Aims at major scope of forward particle identification detector (dRICH) including ASICs development, at (part of) the Si/MAPS tracker scope, and at photo-sensor contributions as well as contributions to the µRwell. Tracker (forward disks)
Israel	B0 Detectors (Si tracking and PbWO4)
Japan	Interested in a US-Japan agreement; Aims at full scope of Zero-Degree Calorimeter in collaboration with Taiwan/Korea. Pursuit of full scope of barrel AC-LGAD detector as EIC-Asia consortium. Contribution to DAQ/streaming.
Korea	Aims at major scope for fiber-based barrel EM calorimeter, Also interest in barrel AC-LGAD and Si-based hadronic calorimetry for ZDC.as part of EIC-Asia consortium (includes also Japan, Taiwan), Si tracking detector and GEM-based detectors. Proposal submitted to MSIT.for M&S for barrel EMCal and support for labor for all interests. In policy review stage.
Poland	Actively working with ministry/funding agency; Interested in detectors along the beam line (luminosity detector, Roman Pots)
Taiwan	Pursuit of full scope of barrel AC-LGAD as part of EIC-Asia consortium. LYSO-based EM calorimeter for ZDC, Also optical readout/fiber. Possible later interest in PCBs. Computing. Also investigating if AC-LGAD sensors can be produced by Taiwan industry, if so these sensors could be in-kind.
UK	STFC seed funding for UK detector R&D (3M£). Large STFC/UKRI research infrastructure proposal approved, includes the two outer barrel layers of the silicon vertex tracker, two tracking stations for the low-Q2 electron tagger, and components for the luminosity monitor. Also includes accelerator component.

May 2024 RRB Meeting Participants

EIC RRB Meeting May 6-7, 2024

3