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Classification: Particle type identification (PID)
● Different particles produce different types of rings

Regression: reconstructing particle’s properties:
● Location and time of PMT hits allows triangulating position and direction
● Amount of charge observed at PMTs gives estimate of energy
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Traditional reconstruction method
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fiTQun: Likelihood-based reconstruction for higher energies
● Originally developed for Super-K detector

○ Based on algorithm of MiniBooNE: https://arxiv.org/abs/0902.2222

● Uses full information of unhit PMTs + time & charge of hit PMTs: 

● Probabilities calculated based on direct + scattered + reflected light

● Likelihood ratios used to distinguish particle types and single-ring / multi-ring 
event topology hypotheses

https://arxiv.org/abs/0902.2222


Machine learning reconstruction for WC
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Limit of traditional maximum-likelihood reconstruction methods (fiTQun) is being 
reached
● Computation time is becoming a limiting factor

○ Larger far detector with more PMTs increases computation time
○ Smaller intermediate detector requires scaled down resolutions
○ Improving resolutions requires more complex algorithms with fewer approximations

ML and deep neural networks have potential to push reconstruction further
● Very successful in areas of computer vision and image processing
● Potential to use all information without detector model approximations
● Very fast to run once neural networks have been trained

○ fiTQun reconstruction: 1M events uses 10,000s CPU-hours
○ ML reconstruction: 1M events uses less than 1 GPU-hour
○ Opens opportunities for analyses with huge datasets not currently feasible



Image-like data for IWCD with mPMTs 19 for charge
+19 for time

Full cylinder is unwrapped onto flat image
● One pixel per multi-PMT
● 38 channels per pixel:

19 charge & 19 time channels of the 19 
PMTs per mPMT

multi-PMT
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Data Transformations and Augmentation
Applying random transformations using detector symmetry effectively increases dataset
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Rearranging and duplicating the geometrical 
surface has several advantages
● Less dependence on “choice” of slice along 

barrel to unwrap cylinder
● All segments appear exactly twice with minimal 

blank space
● Circular boundary conditions in both directions



ResNet architecture for IWCD with mPMTs
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1. Convolution over mPMTs 2. Convolutions & down-samples

3. Fully 
connected 

neural 
network

Initial convolution over 
the mPMT channels

Convolutional Neural Network based on ResNet-50
● Initial ResNet 7x7 convolution with downsampling replaced by 1x1 convolution over 

38 mPMT channels without downsampling
● Circular padding applied at each convolution to exploit circular boundary conditions

Also explored point-cloud based networks (PointNet, DG-CNN) and graph networks but 
ResNet CNN has consistently given best results so far



PID results: electron vs muon

ResNet performing better, particularly 
where fiTQun’s likelihood model 
approximations fail close to detector wall
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Basic cuts: >25 hits & fully contained events
All cuts: basic cuts & fiTQun fit converges & 
true position > 50cm from tank wall

Electron PID efficiency 
with 99.9% muon 
rejection



PID results: electron vs pi0 and gamma

ResNet performing better, particularly at 
high energies where two rings from pi0 
decay gammas overlap
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Electron PID 
efficiency with 
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Separation of electrons and gammas never 
successfully used with fiTQun
Statistical separation of ~70% with ResNet

Separation of 
electrons and 

gammas 
converting to 

e+/e- pair



Regression results
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Challenges and plans
● Performance for IWCD is good - now surpassing 

traditional methods in all tasks we have trained
○ But relies very heavily on MC simulation
○ fiTQun also highly tuned to simulation, but designed based on 

physical principles
○ For ML, now planning to explore effect of imperfect simulation, 

to check reconstruction is robust and understand how to 
prevent learning artefacts of simulation

● HK far detector has more complex geometry
○ Checkerboard pattern, not simple grid of 20” PMTs
○ Mixture of 20” PMTs and multi-PMTs
○ Mapping to a 2D image should still be possible, currently 

working on this
■ Non-physical mapping may introduce bias in 

positions/directions
○ PointNet and Graph networks give more flexibility

■ Reconstruction is working but only similar or lower 
performance than fiTQun

● Reconstruction of more complex multi-ring events 
much more challenging

○ Need multiple networks or more complex network architectures 11



Machine learning enhanced simulation and calibration
Some new ideas for applying ML to detector simulation and calibration

Networks trained to correct for 
imperfect detector simulation

● Use ideas from image processing 
networks that modify images

● Train using real detector data to 
modify simulated data:
remove noise, account for water 
quality, etc.

Differentiable detector simulation
● ML models can be trained to replicate 

detector simulations
● This ‘differentiable detector simulation’ 

can then be trained further on real data
● Use calibration data to train the 

simulation to account for detector effects
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GAN generated events Geant4 simulated events

First attempt at 
generating 
realistic events 
trained on 
WCSim events

Photo from bridge 
near Super-K

(real detector event)

“remove clouds and 
add sunset”

(“remove dark noise”)

Real examples of ML-based image transformation

Drawing of cat 
(simulated 

event)

Realistic cat
(looks like real 

data)



Resource requirements and bottlenecks can be very different to traditional reconstruction
● fiTQun is very CPU intensive

○ Most resource intensive part of the entire HK software chain
● ML reconstruction is very fast to run on GPU

○ Bottleneck is usually the time taken to read data from disk (either local or network)
○ Usually run with a few CPU worker threads loading and preprocessing data to feed to GPU
○ Run in mini-batches of ~1000s events to be processed simultaneously in one iteration
○ One process runs over many minibatch iterations to minimise overhead of loading the model
○ With data on a fast local NVMe disk in efficient format, evaluating the ResNet-50 model

● Training ML models has slightly different requirements
○ Data needs to be read repeatedly in randomised order

■ Datasets often too large to fit in RAM (although newer servers with up to e.g. 1TB RAM can)
■ Move all data onto fast local disk before training
■ Use an uncompressed, unchunked data format like HDF5, stored as dense arrays of the data to be input 

to ML model
○ With fast enough disk, or enough RAM to store whole dataset, bottleneck becomes moving data between RAM 

and GPU VRAM
■ For more complex networks GPU processing itself is bottleneck

● For the ResNet-50 models, with data on a fast local NVMe disk in HDF5 format, using one 
NVIDIA A100 40GB and 4 CPU cores

○ Training one model (4-class PID, or a single reconstruction variable) takes ~ 48 hours
■ During development, repeat this many times e.g. with different hyperparameter configurations

○ Evaluating one model on 1M events takes less than 5 minutes

Computing requirements for ML

13


