

Deploy services over CLOUD

A brief overview of the INFN CLOUD and the offered services

- Michele Delli Veneri – <u>delliven@na.infn.it</u>

Istituto Nazionale di Fisica Nucleare

Workshop Jennifer 2, CERN, 20/02/2024

Istituto Nazionale di Fisica Nucleare Sezione di Napoli

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Who am I and most importantly what I do?

Tecnologist at INFN Section of Naples

IBISCO CLOUD NAPOLI

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

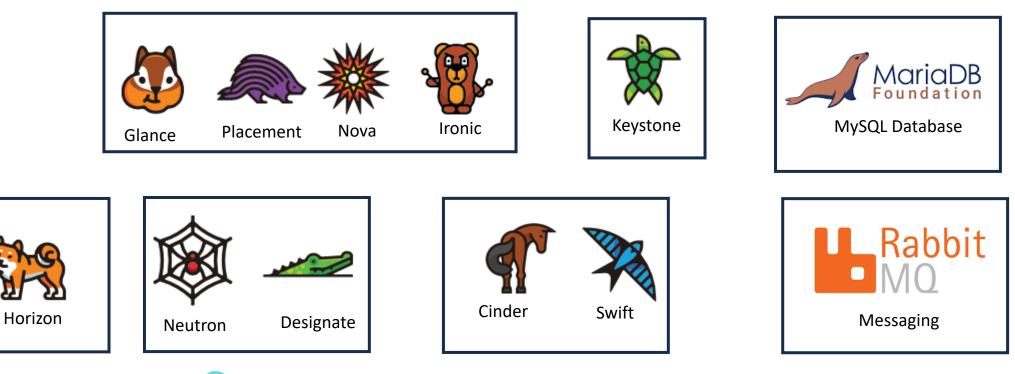
Ministero dell'Università e della Ricerca

What is CLOUD Computing?

Cloud computing refers to the delivery of computing services over the internet ("the cloud") to offer faster innovation, flexible resources, and economies of scale. In essence, cloud computing allows users to access and utilize computing resources, such as servers, storage, databases, networking, software, and analytics, without the need for owning or managing the physical infrastructure themselves. **Infrastructure as a Service (IaaS)**: Provides virtualized computing resources. Users can provision and manage virtual machines, storage, and networking infrastructure.

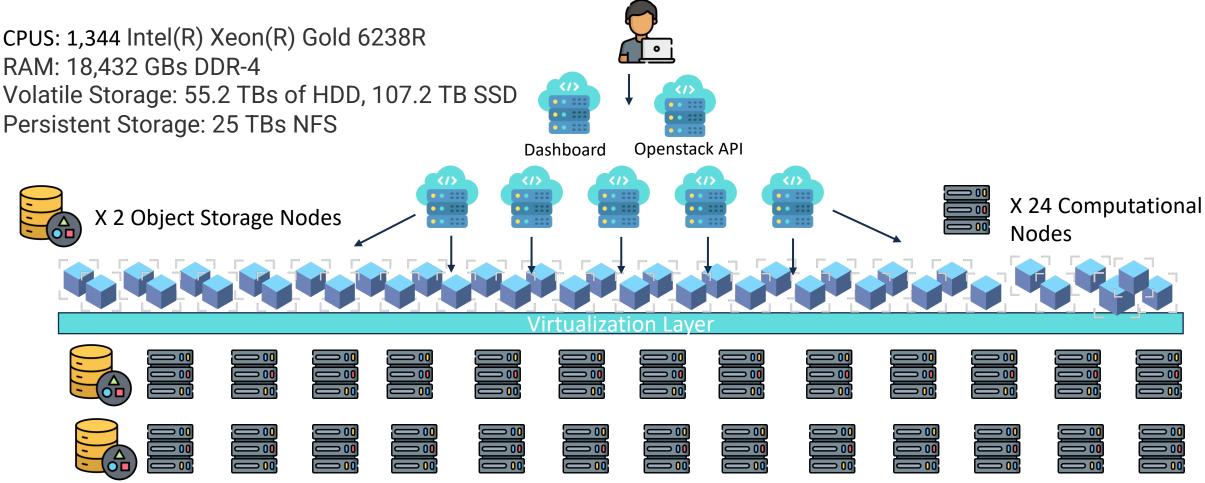
Platform as a Service (PaaS): Offers a platform allowing customers to develop, run, and manage applications without worrying about the underlying infrastructure. PaaS providers handle the hardware and software infrastructure, including middleware, development tools, database management systems, and runtime environments.

Software as a Service (SaaS): Delivers software applications. Users can access and use the software without needing to install or maintain it.



IBISCO Cloud NA – OpenStack and Overview

Openstack Services are built on VM generated through Proxmox. This ensure recoverability and HA



IBISCO Cloud NA – OpenStack and Overview

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

What is CLOUD Federation?

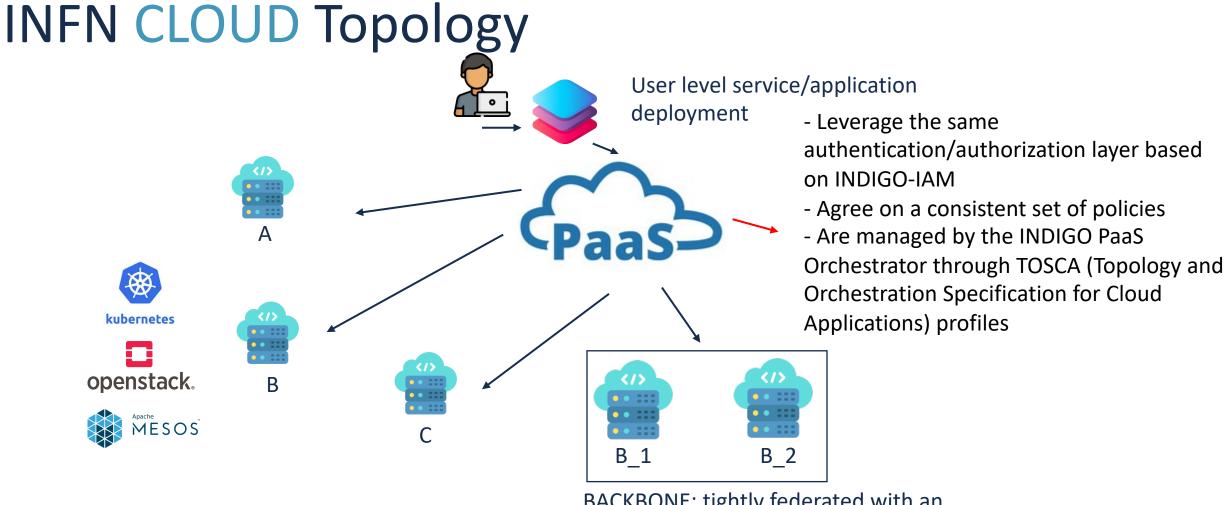
Cloud federation, also known as cloud interoperability or federated cloud computing, refers to the integration and collaboration of multiple cloud computing environments to enable seamless data and resource sharing across disparate cloud platforms. The goal of cloud federation is to create a unified computing environment that spans multiple cloud providers, enabling users to leverage resources and services from different providers as if they were part of a single, cohesive

Lightly Coupled Cloud Federation:

- the cloud environments maintain a degree of independence and autonomy;

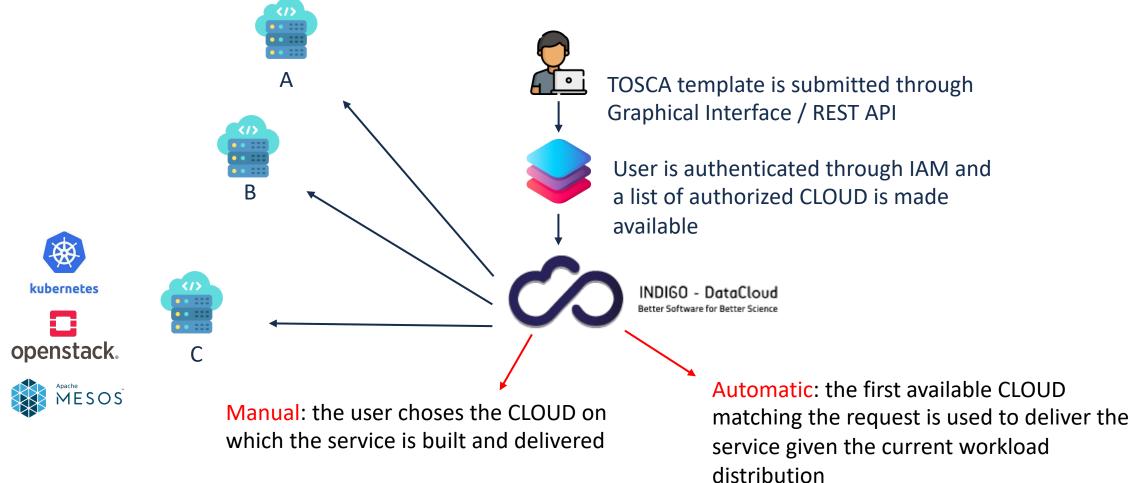
- Each cloud provider retains control over its infrastructure, policies, and services, no resource sharing between the federated clouds

Tightly Coupled Cloud Federation:


- the participating cloud environments are tightly integrated and interdependent, forming a unified and cohesive computing environment; advanced capabilities such as workload migration, federated identity management, unified billing, and crosscloud service orchestration

Ministero dell'Università e della Ricerca

BACKBONE: tightly federated with an infrastructure-level mirror

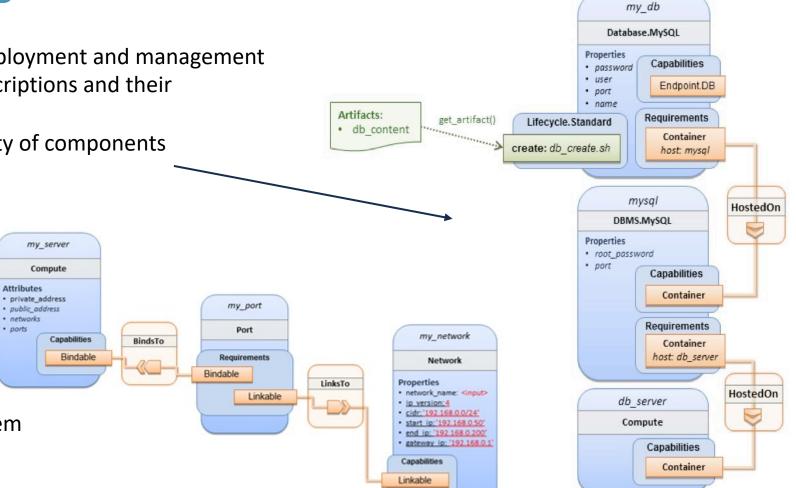


Ministero dell'Università e della Ricerca

INDIGO PaaS Orchestrator

Allow the creation of complex system

through a "LEGO-like" syntax.


Ministero dell'Università e della Ricerca

TOSCA Templates

- Allow the automatic application deployment and management ٠
- Allow portability of application descriptions and their ٠ management
- Allow interoperability and reusability of components •

Attributes

ports

· public_address networks

COMPLEXITY

Finanziato dall'Unione europea NextGenerationEU

TOSCA Service Catalogue

The Catalogue is a graphical representation of TOSCA templates:

- Each card in the catalogue is associated to one or more templates
- Complex templates are built by combining simpler templates
- Once a template has been built and tested is made available to scientists
- 1. Allows to easely build services on top of a laaS and PaaS infrastructure
- 2. Lowers the entry barrier for scientists which do not need any programming skill to use / create their applications
 - Creation of VMs with different flavors, images and sizes
 - Creation of containers or services via docker-compose files
 - Building blocks as a serivce (Kubernets or Mesos clusters as as a service)
 - Pre-coinfigured environments for data analytics (ElasticSearch, Spark)
 - Non volatile, object storage and posix-complient file systems connected to high-layer services (Jupyter Notebook as a service with permanent storage)
 - Data Pipelines for specific experiments (MPI Simulations, ML-optimized environments)
 - User-level encryption of disk volumes, Monitoring Services, Spark Clusters, Kubernates Clusters

PaaS Interfaces - user perspective

- 1. PaaS REST API
- 2. Orchestrator CLI
- 3. Orchestrator Bindings (python)

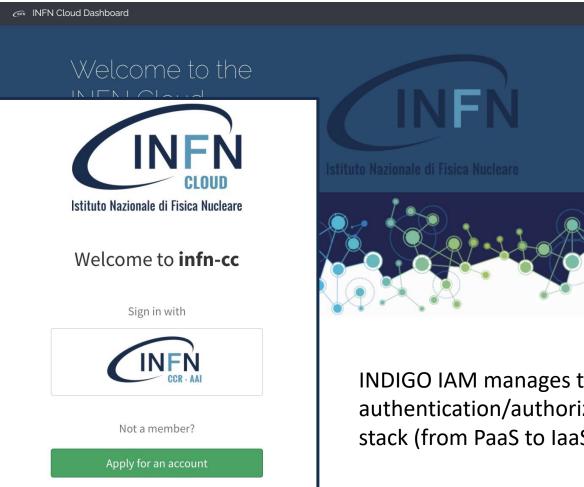
Requirements:

- Basic TOSCA Knowledge
- Installation and configuration of CLI tools
- Authenitcation token managements

 Orchestrator dashboard reachable through your browser

Requirements:

- No TOSCA Knowledge is needed
- Accessible through web
- Automatic token management through user login / autorization
- Easy to use and intuitive



PaaS Dashboard – Authentication and Authorization

- Users are organized into different IAM groups which correspond to Virtual Organizations (VO) roles
- Each IAM group is mapped to a specific set of resourse quotas spread over different Cloud infrastructures
- A specific set of services is made available to the user on the basis of the resource quotas
- Once a service has been selected, a TOSCA template is used to build and deliver the service to the user

INDIGO IAM manages the authentication/authorization through the whole stack (from PaaS to IaaS)

PaaS Dashboard – Service Request Customization

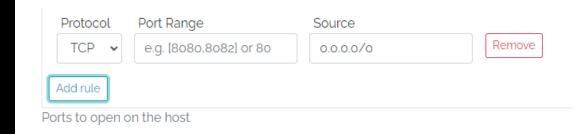
	Description: Launch a compute node getting the IP and SSH credentials to access via ssh	
	Deployment description	
	description	
1	Configuration Advanced	
	hostname	
	ports	
	Add rule	
ļ	Ports to open on the host	
ſ	Select	_
	Select Number of vCPUs and memory size of the Virtual Machine	_
	withber of veros and memory size of the virtual machine	
	operating_system	
l	Select	-
1	Operating System for the Virtual Machine	

topology_template:

inputs:

num_cpus:

type: integer description: Number of virtual cpus for the VM required: true


mem_size: type: scalar-unit.size description: Amount of memory for the VM required: true

os_distribution: type: string required: true description: Operating System distro constraints: - valid_values: ["ubuntu", "centos"]

os_version: type: version required: true description: Operating System distribution version constraints: - valid_values: [16.04, 18.04, 7]

service_ports: type: map required: false constraints: - min_length: 0 entry_schema: type: tosca.datatypes.network.PortSpec description: Ports to open on the host The configuration form allows the user to specify their requirements for the deployment

- It hides all the complexity of TOSCA
- Complex TOSCA types are managed with dedicated Javascript functions

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

PaaS Dashboard – Advance Customization

Virtual machine	Virtual machine	Dashboard interacts with the SLA Manager Service
Description: Launch a compute node getting the IP and SSH credentials to access via ssh	Description : Launch a compute node getting the IP and SSH credentials to access via ssh	to get the list of available Cloud providers for the
Deployment description	Deployment description	user
tester	tester	
Configuration Advanced	Configuration Advanced	
	Configure scheduling:	
Configure scheduling:	⊖ Auto	
● Auto O Manual	Select a provider:	
Set deployment creation timeout (minutes) 720	CLOUD-VENETO: org.openstack.nova	
Do not delete the deployment in case of failure	CLOUD-VENETO: org.openstack.nova	
	CLOUD-IBISCO-NAPOLI: org.openstack.nova	
Send a confirmation email when complete	CLOUD-CNAF-T1: org.openstack.nova	
Submit Submit	Submit 🛇 Cancel	

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

PaaS Dashboard – Deployment Outputs

Reployments • Advanced • External Links • priv-admi	ins/catchall - 🥚	Michele Delli Veneri 👻	Actions
My deployments	C Refresh	+ New deployment	Edit
Show 10 + entries Description Deployment identifier Status Creation time	Search: Deployed at	Actions	 PI Q Show template Log Image: Request Ports
test deployment11eecbf8-6c78-11aa-8be4- 56fce75eobfaCREATE_COMPLETE 11:50:002024-02-15 	CLOUD-IBISCO- NAPOLI		☐ Manage VMs ☐ Lock ☐ Delete
Showing 1 to 1 of 1 entries		11eecbf8-6c78-11aa-8be4-56fce75e0bfa	🗲 Back
		Description: test deployment Overview Input values Output values	
		vpn_server: ibisco-endpoint.na.infn.it:42120 node_ip: 192.168.204.88 ssh_account: delliven	
		vpn_client_conf_url: https://baltig.infn.it/infn-cloud/vpnconfiles/-/raw/main	/vpn-ibisco-endpoint.na.infn.it:42120-client.ovpn?inline=false

PaaS Dashboard – Secret Management

SSH keys management

SSH keys allow you to establish a secure connection between your computer and your virtual server(s).

Upload SSH public key

Paste your public SSH key, which is usually contained in the file '-/.sh/id_ed25519.pub' or '-/.sh/id_rsa.pub' and begins with 'ssh-ed25519' or 'ssh-rsa'. Don't use your private SSH key.

📥 Upload

Create new key pair

SSH key pair will be created from scratch. The private key will be safely stored in the Vault, while the public key will be stored in the Dashboard database.

+ Create new SSH key pair

The Dashboard is integrated with Hashcorp Vault to support:

- ssh key pair management
- Service credential stores (e.g. AWS)

The Vault has been integrated with the Cloud IAM and policies grant read/write permissions to specific Vault paths depending on the user claims

Service Credenti	als	
Site	Endpoint	Manage your credentials
AWS-us-east-1	https://ec2.us-east-1.amazonaws.com	GET SET DELETE
AWS-us-east-2	https://ec2.us-east-2.amazonaws.com	GET SET DELETE

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Sync&Share aaS

INFN Cloud – List of Services

CENTRALISED SERVICES:		UN-DEMAND SERVICES:		
the centrally managed service based on MinIO-Gateway Go to service	oks as a Service (NaaS)	Virtual machine	Docker compose Deploy a virtual machine with docker engine and docker compose pre-installed. Optionally run a docker compose file [] Read More Configure	Run docker
INFN-Cloud monitoring		INDIGO IAM as a Service	Elasticsearch and Kibana	Kubernetes cluster
 The list of Services depends of IAM group. It grows as users and admins of configure TOSCA templates for 	create and	Spark + Jupyter cluster	HTCondor mini	Jupyter with persistence for Notebooks

ON-DEMAND SERVICES

Jupyter + Matlab (with persistence for Notebooks)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

INFN Cloud – Jupyter Notebook with Persistence

Description: Run Jupyter on a single VM enabling Notebooks persistence	
Deployment description	
description	
General Authorizations Advanced	
num_cpus	
2	
Number of virtual cpus for the VM	
mem_size	
4	≎ GB
Amount of memory for the VM	
enable_monitoring false	v
Inable/disable monitoring	
jupyter_images	
dodasts/snj-base-lab-persistencev111-snj	
Default image	
-	
jupyterlab_collaborative false	*
naise mable the jupyter collaborative service	
jupyterlab_collaborative_image	
dodasts/snj-base-jlabcv111-snj	
Default image for jupyter collaborative service	
contact_email	
mail address of certificate management administrator	
ports	
Add rule	
Ports to open on the VM	
certificate_type	
letsencrypt-prod	v

Jupyterhub is automatically installed and configured in a Virtual Machine

- The integration with the INFN Cloud IAM allows authorized users to login and spown their containerized (docker) service
- It can be built from a default jupyter image or customized docker image (containing, for example, a scientific pipeline)
- The integration with the INFN Cloud Storage provide persistence to the Notebooks

Description	tion: Run Jupyter on a single VM enabling Notebooks persistence	
Deploym	nent description	
descript	otion	
General	Authorizations Advanced	
iam_grou	ups	
	ups for authorization management (comma delimited list of strings) min_groups)
AM group	ips for JupyterHub ADMIN authorization management (comma del	limited list of strings)

INFN Cloud – Community Customizations

Community costumized environments are built upon the Jupyter with persistent storage VM usecase

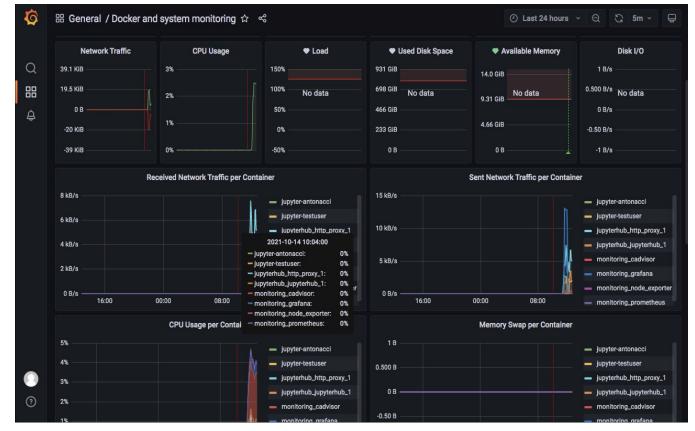
New Environments can be constructed through interactions with the Community

ontrol Par

INFN Cloud – Community Customizations

Files Running IPython Clusters				
elect items to perform actions on them.		Upload New - 2		
	Name 🜢	Notebook: Python 3	WARNING: You are running this container as root, wh mounted volumes to be created as the root user on y	
C Cvmfs		ROOT C++	To avoid this, run the container by specifying your \$ docker run -u \$(id -u):\$(id -g) args	user's userid:
D D private		Other:	root@bd8f6fe3da4c:/workarea# nvidia-smi Sun Mar 21 15:58:10 2021	
b shared		Text File	NVIDIA-SMI 460.32.03 Driver Version: 460.32.03	CUDA Version: 11.2
CernVM-FS		Folder Terminal	GPU Name Persistence-M Bus-Id Dis Fan Temp Perf Pwr:Usage/Cap Memory-Us 	p.A Volatile Uncorr. EC age GPU-Util Compute M MIG M
	7	, ,	0 Tesla T4 On 0000000:00:05.0 0 N/A 34C P8 9W / 70W 0MiB / 151090	
CernVM File System Virtual File System mounted to	allow			4iB 0% Defaul N/ Dff
CernVM File System	allow		N/A 34C P8 9W / 70W 0MiB / 151090	41B 0% Defaul N/ Off 41B 0% Defaul
CernVM File System Virtual File System mounted to data access and storage	allow		N/A 34C P8 9W / 70W 0MiB / 15109	41B 0% Defaul N/ Off 41B 0% Defaul
CernVM File System Virtual File System mounted to		ade available	N/A 34C P8 9W / 70W 0MiB / 151090 1 Tesla T4 0n 00000000:00:06.0 0 N/A 35C P8 9W / 70W 0MiB / 151090 	41B 0% Defaul N/ Dff 41B 0% Defaul N/ B N/ CPU Memor

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



INFN Cloud – Monitoring through Grafana

APEL + CASO + STUNNEL on the CLIENT Side

Thank you for the attention

