

Carbon nanostructures for neutrino physics, the Ptolemy experiment

Gianluca Cavoto - Sapienza Univ Roma and INFN Roma Dipartimento di Fisica - Sapienza Channeling 2024 - Riccione

- The neutrino cosmological background (CvB), the (absolute) neutrino mass measurement.
- The Ptolemy project
 - A novel type of electro-magnetic **filter**
 - Advanced detection concepts (nano-fabricated transition edge sensors, very low power radio-frequency detection)
 - A Tritium target based on **carbon nanostructure**

What happened 1 sec after the Big Bang??

- Primordial universe in (local) thermal equilibrium
 - If a reaction rate Γ is *less* than Universe expansion rate H, a particle/radiation species can "decouple"
 - Spectrum determined by its temperature at that time

6

Several attempt to propose a detection of (neutral) particle with minuscule momentum

Gianluca Cavoto

- Neutrino wind: coherent scattering
 - Need to measure a very small acceleration O(10⁻²⁷ cm/s²) but with (GW) laser interferometry ~ 10⁻¹⁶ cm/s²

https://arxiv.org/abs/hep-ph/0107027

https://arxiv.org/abs/2109.07482

https://arxiv.org/abs/1703.08629

And more:

- Interaction with high energy neutrinos
- Ion storage ring
- Superconductors,

- Weinberg (<u>1962</u>)
- Revived more recently: Cocco, Mangano, Messina (2007)

The target, atomic tritium ³H

Ptolemy Coll, M.G.Betti et al. JCAP 07 (2019), 047

• Why **tritium**:

- Relatively high cross section for capture
- Relatively long lifetime (12 y)
- Low Q value (18.6 keV)
- But
 - ▶ Need 100g ³*H* for ~10 CvB events/y
 - And ³H beta decay rate is ~0.2 THz/mg

Gianluca Cavoto

- How to get to < 50 meV (β) electron kinetic energy resolution at 18.6 keV (i.e. < 3 ppm)</p>
- ▶ How to deal with a **10**¹⁸ **Bq** radioactivity ?

M.G. Betti et al JCAP07 (2019) 047

An R&D project to demonstrate the detection concept

- Precisely defined (ppm) voltage difference: β-electron slowed down and removed to decimate the flux unless close to the endpoint
- Measure the electrons left with $E \sim 1-10 \text{ eV}$ (with 10^{-2} resolution)

• Tritium on graphene: atomic ${}^{3}H$ stored on a thin electrode

- Fast ~30 GHz radiation fast detection as *trigger* cyclotron radiation emission (similar to Project-8)
- Novel electromagnetic filter

M.G.Betti et al, <u>Progress in Particle and Nuclear Physics</u>, 106, (2019) 120-131

 Cryogenic micro-calorimeter based Transition Edge Sensors (TES) technology

The demonstrator

Electron Transport: RF pickup & Filter

- Goal of the < 50 meV energy resolution:
 - Preparare the initial state on
 - A well defined spatial position (electrode)
 - Deal with intrinsic quantum spread of localisation of atomic ³H (Heisenberg limit)
 - Interplay with condensed matter physics
 - **Detect** the electrons after the **end** of the filter
 - Kinetic energy much reduced (up to 10-100 eV)
 - Deal with absorption of very slow electron in materials
 - Transition Edge Sensors (TES) as micro-calorimeters

The target for neutrinos, source of electrons

Solid substrate

- Well defined potential
- Prevent molecule formation
- Can store (up to) 0.5 mg/cm²
 - One ³*H* each C

Mahmoud Mohamed Saad Abdelnabi et al 2021 Nanotechnology 32 035707 Mahmoud Mohamed Saad Abdelnabi et al Nanomaterials 2021, 11(1), 130

³H atom chemically bound to a *C* atom on a flat graphene

17

Nano Lett. 2022, 22, 7, 2971-2977

 Successfully tested various techniques to "*implant*" hydrogen (deuterium) to Nano-Porous Graphene

 Hydrogen chemi-sorbed on NPG (single or double layers continuous graphene surface)

- Larger than 90% hydrogen coverage
 - ▶ In situ *H* thermal cracking
 - *H* atoms diffuse in UHV to NPG
 - X-ray photoelectron spectroscopy on C 1s: amount of sp³ coordinated H
- Band-gap observed: semiconductor (graphAne)

Next: put tritium on graphene and demonstrate it is a "solid" radioactive source

- Spatially localised tritium (by covalent bond) implies an uncertainty on the tritium momentum
 - Effect on the electron energy resolution: ~500 meV (!?!)

Ye. Cheipesh, V. Cheianov, and A. Boyarsky Phys. Rev. D 104, 116004

Localization of ³H implies uncertainty on ³H momentum: effect on the electron kinetic energy spread

$$^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$$

 $\nu_{e} + ^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-}$

Fluctuating momenta

4-mom. conservation

$$\mathbf{p}_T = \mathbf{\Delta} \mathbf{p}_T$$
$$\mathbf{p}_{He} = \bar{\mathbf{p}}_{He} + \mathbf{\Delta} \mathbf{p}_{He}$$
$$\mathbf{p}_e = \bar{\mathbf{p}}_e + \mathbf{\Delta} \mathbf{p}_e$$

$$\Delta E_e \simeq \left| \frac{\mathbf{p}_e \cdot \Delta \mathbf{p}_T}{E_{He}} \right| \sim \frac{p_e}{m_{He}} \frac{1}{\Delta x_T}$$
spread of initial tritium wave
function ($\Delta x_T \sim 0.1 \text{ Å}$)

Can be as large as 500 meV

A. Apponi et al. Phys. Rev. D 106, 053002 (2022)

Electric Potential binding tritium depends on the concavity of the surface !

- "Passivated" CNT can host a tritium atom
- Prevent dimerization with magnetic field

Outlook

• End point of the β -spectrum of ³H sensitive to neutrino mass.

KATRIN

https://www.katrin.kit.edu/

 Ptolemy aims at storing up to ~mg
 ³H in a first phase

More compact
 (~1 m long) apparatus

- Neutrino mass as first result
 - 1. Small exposure already gives sensitivity to O(10meV) m_v
 - 2. Crucial for design of full scale CvB PTOLEMY with 100g tritium

Working on a more realistic sensitivity estimante including initial and final state of ³H and ³He interaction with graphene

INFN-Sapienza laboratories for technology with carbon nanostructure at Segrè.

More than that

 Light dark matter directional detector (Andromeda)

See Luca Cecchini's talk

- Many other applications of carbon nanostructure
 - CNT-doped copper for additive manufacturing (with INFN): Dragon Cu, international patent
 - **UV light** detector based on VA-CNT environment monitoring, astrophysics : NanoUV)
 - CNT for anti-microbial surface (with Biology dep.) and enhanced bio-sensors
 - **Composite** materials, CNT on basalt fibers (with DIMA at Sapienza)

26

Looking for a game-changer for future experiments

When asked if he believed in asking customers what they want – Ford replied: **"If I had asked them what they had wanted, they would have said a faster horse."**

