

Imperial College London

Istituto Nazionale di Fisica Nucleare Sezione di Roma

BEAM SUPERIMPOSITION WTH BENT CRYSTALS

M. Bauce <u>matteo.bauce@roma1.infn.it</u> on behalf of the UA9 Collaboration Channeling 2024 - 8-13/9/24 - Riccione, Italy

Bent Crystals

- Channeling phenomena in bent crystal has been investigated in the past decades
- oppositing from anticlastic crystal deformation bending up to few mrad has been achieved
- Beam steering been experimentally demonstrated for particles ranging from 3 MeV to 1 TeV in energy

Beam Halo cleaning

arXiv:1707.05151

U-70 beam extraction

PRL 87, 094802 (2001)

Beam recombination

- Colliders profit from high instantaneous luminosity, which leads to more data collected by experiments (higher sensitivity, higher precision)
- Beam transverse cooling is a crucial aspect to achieve high luminosity
- To overcome single beam production limitations, recombination of multiple beams is a technique to increase the accelerator luminosity
- Optical techniques have intrinsic limitations, can only set beams side-to-side

can a bent crystal be an *angular filter* thanks to its combination of *coherent* and *non-coherent* behaviours?

 $\mathscr{L} = \frac{fN_1N_2}{4\pi\sigma_r^*\sigma_r^*} \Rightarrow \frac{fN^2}{4\pi\sigma^2}$

 σ depending on beam emittance and accelerator lattice

Coherent phenomena in Bent Crystals

can a bent crystal be an *angular filter* thanks to its combination of <u>coherent</u> and *non-coherent* behaviours?

The IDEA

looking things from a different perspective

The IDEA

absolute reference frame

EPJ Plus 138, 981 (2023)

The IDEA

absolute reference frame

EPJ Plus 138, 981 (2023)

Recast available data

UA9 has recorded already data studying properties of bent crystal:

can we profit from them?

Recast available data

UA9 has recorded already data studying properties of bent crystal:

Recast available data

EPJ Plus 138, 981 (2023)

UA9 Data Analysis

EPJ Plus 138, 981 (2023)

UA9 Data Analysis

Crystal vs. Magnetic Stacking

An indication of the crystal-assisted merging can be obtained comparing it with magnetic recombination

due to the MCS affecting particles crossing 4 mm of crystal and contribution from dechanneled particles.

Alternative recombination schemes

Channeling + Amorphous

Simulations: beam: 10 GeV μ^+ L_{x,y,z} : 3.0x50.0x1.0 mm² θ_b : 500 μ rad

Amorphous + Volume Reflection

Alternative recombination schemes

Different combinations of beams impinging on the crystal are producing different recombination structures.

Simulations: beam: 10 GeV μ^+ $L_{x,y,z}$: 3.0x50.0x1.0 mm² $\theta_{\rm b}$: 500 μ rad

Amorphous + **Volume Reflection**

To further investigate and evaluate the performance of crystal-assisted merging, an experimental setup is in preparation.

This will be taking data profiting from SPS p/ π beam in CERN North Area.

To further investigate and evaluate the performance of crystal-assisted merging, an experimental setup is in preparation.

This will be taking data profiting from SPS p/ π beam in CERN North Area.

not to scale

To further investigate and evaluate the performance of crystal-assisted merging, an experimental setup is in preparation.

This will be taking data profiting from SPS p/ π beam in CERN North Area.

To further investigate and evaluate the performance of crystal-assisted merging, an experimental setup is in preparation.

This will be taking data profiting from SPS p/ π beam in CERN North Area.

To further investigate and evaluate the performance of crystal-assisted merging, an experimental setup is in preparation.

This will be taking data profiting from SPS p/ π beam in CERN North Area.

not to scale Golden Rule **Crystal 2** $\theta_{b_1} = \theta_{b_3} = \theta_{b_2}/2$ 200 **Crystal 3** 150 Horizontal angles [µrad θ_{b_3} Need to address few key items to achieve this configuration: 100 orystals' bending angles and alignment should be carefully tuned • more complex tracking requires modification to tracking system 0ذ– need the recombined beam to be apart from the main beam -100

Crystals and Holders

- Dedicated crystals with proper curvature are needed
 - Si(110) Boron doped or Phosphorous doped
- Holder in preparation with fine-tuning adjustement of bending angle
 - aiming at few mrad bending
 - some RD22-2 holder and crystals available, bending in the range 500-800 μ rad

Crystal carachterization and bending measurement to be carefully evaluated

not to scale

not to scale

- Additional tracking layer being integrated in the DAQ and Readout system
- General alignment procedure defined
- Calibration and evaluation of telescope angular resolution

Conclusions

- The coherent and non-coherent bent crystal behaviours offer an intriguing scenario for beam superimposition
- Concept proven to be valid on UA9 available data and simulations - promising preliminary results
- Experimental setup in preparation at CERN SPS beam granted to UA9 until end of LHC Run 3
- Technique which can be highly beneficial for future generation of colliders

