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1. The frequency-angular distribution of the number of photons
produced in a medium, regardless of the type of radiation

The system of four interrelated Maxwell equations of the electromagnetic field forms the
foundation of electrodynamics. The microscopic form of these first-order partial differential
equations, when using scalar and vector potentials, is reduced to two second-order equa-
tions. By utilizing the freedom in defining the potentials, it is possible to choose a system
of potentials that satisfies the Lorenz condition. In this case, the potentials satisfy individual
inhomogeneous wave equations, which have the same structure. If the gauge scalar function
satisfies the homogeneous wave equation, then the Lorenz condition remains valid for the
potentials satisfying this condition before transformation. The Lorenz gauge is independent
of the choice of the coordinate system. A particular solution of the inhomogeneous wave
equation for scalar and vector potentials, for a confined distribution of charges and currents
in the absence of boundaries, is determined through the retarded Green’s function in accor-
dance with the causality condition. The electromagnetic field of a point charge, determined
by the Liénard–Wiechert potentials, includes not only the static field but also the transverse
radiation field, which depends on acceleration. The total energy radiated per unit solid angle
is determined by integrating the power over time, which is defined by the radiation field inten-
sity. The Fourier amplitude of the radiation field is expressed as an integral along the charge
trajectory. It is assumed that the observation point is sufficiently distant from the region of
space where the radiation field is formed, such that it is observed under a small solid angle.
Integration is carried out over the time interval during which the acceleration of the charged
particle is non-zero. In the frequency-angular distribution of the radiation energy, obtained
based on the microscopic form of the Maxwell equations, by replacing the speed of light in a
vacuum c with c/

√
ϵ(ω) and the charge e with e/

√
ϵ(ω), where ω is the radiation frequency;

we obtain the energy distribution of the radiation produced in the medium.
Dividing the energy distribution of the radiation by ℏω, where ℏ = h/(2π) and h is Planck’s
constant, yields the following distribution for the number of radiated photons.

d3N

dωd(cosϑ)dφ
=

αω
√

ϵ(ω)

4π2
|I(ω, ϑ)|2, (1)

where d(cosϑ)dφ represents the solid angle of radiation: the polar angle ϑ is measured from
the unit vector in the direction of radiation n = − sinϑ cosφ i−sinϑ sinφ j+cosϑk, and φ is the
azimuthal angle. The constant α = 1/137 is the fine-structure constant. The electromagnetic
field of the radiation is defined by the following time integral:

I(ω, ϑ) =

∫
a(t) exp

{
iω

(
t−

√
ϵ(ω)

c
n · r(t)

)}
dt,

a(t) = [n× [n× β]],

(2)

where β(t) is the particle’s velocity in units of c, and r(t) is the particle’s trajectory. The
integration in (2) is performed only over the time interval during which the charged particle
interacts with the medium and/or external fields.
When the velocity of the charged particle is constant, radiation occurs when the argument of
the exponent goes to zero. This condition corresponds to the law of conservation of energy-
momentum and relates the photon energy to the direction of radiation. It is satisfied in the
case of Vavilov-Čerenkov radiation β

√
ϵ(ω) > 1, as well as in transition radiation due to the

difference ∆ϵ(ω) at the boundary of two media. When the velocity of the charged particle
changes, the law of conservation of energy-momentum holds, taking into account the inte-
grand factor a(t).

2. Line shape of soft and hard photons emitted at zero angle

To the extent that small energy losses due to radiation justify a classical approach to the
problem, the energy of the particle is conserved. As the transverse component of the velocity
of a particle with energy γmc2 changes; where γ is the Lorentz factor and mc2 is the rest
energy; the longitudinal component also changes. However, radiation caused by changes in
the longitudinal component of velocity is smaller by a factor of γ2 than the radiation caused
by changes in the transverse component. Therefore, we will assume that the particle moves
in the longitudinal direction of the undulator with a root-mean-square velocity β∥ =

√
⟨β∥(t)2⟩.

Then, due to energy conservation, β2 = ⟨β⊥(t)2⟩ + ⟨β∥(t)2⟩ = ⟨β⊥(t)2⟩ + β2∥, it follows that

the energy of the longitudinal motion of the particle γ∥ = 1√
1−β2

∥

is less than the total en-

ergy γ by a factor of
√
Q =

√
1 + γ2⟨β⊥(t)2⟩. The transverse velocity of the particle in the

magnetic field of a planar undulator (a one-dimensional oscillator) varies according to the
law β⊥(t) = −β⊥ sin (Ωt) j, where β⊥ is the undulator parameter, and Ω is the oscillation fre-
quency. Thus, the trajectory of the particle is r(t) = (β⊥c/Ω) cos (Ωt) j + β∥ck. Note that for a
one-dimensional oscillator, Q = 1 + q2/2, where q = β⊥γ is the radiation parameter, unlike a
two-dimensional oscillator, for which Q = 1 + q2.
If the particle in the planar undulator undergoes n0 oscillations with frequency Ω, it is conve-
nient to integrate (2) with respect to the variable τ = Ωt over the range [−πn0, πn0]. Since
we are interested in the line shape of the frequency distribution of radiation at ϑ → 0, it is
easy to show that a(t) = n

(
−ϑβ⊥ cosφ sin τ + β∥ cosϑ

)
− β(t) ≈ β⊥(t) = jβ⊥

2i

(
e−iτ − eiτ

)
,

and
√
ϵ(ω)
c n · r(t) approaches β∥

√
ϵ(ω) cosϑ.

Using the dimensionless frequency ξ = ω/(Ωγ2∥), for the frequency-angular distribution of the
number of emitted photons, we obtain:

d3N

dωd(cosϑ)dφ
=

α(Ωγ2∥)
2ξ
√

ϵ(ω)

4π2
|I(ω, ϑ)|2, (3a)

I = j
β⊥
2iΩ

πn0∫
−πn0

(
e−iτ − eiτ

)
e
iξγ2

∥

(
1−β⊥

√
ϵ(ξ) cosϑ

)
τ
dτ, (3b)

where
√
ϵ(ξ) = 1− 1

2γ2
∥

(
r
ξ

)2
, r = γth

γ∥
, γth =

ωp

Ω .

Considering the expansions β∥ ≈ 1−γ−2
∥ /2, cosϑ ≈ 1−ϑ2/2, the argument of the exponent of

the first integrand term, which corresponds to the law of conservation of energy-momentum
during radiation, is:

ϕ(ξ, θ) =
1

2

(
(1 + θ2)ξ − 2 +

r2

ξ

)
, (4)

where θ = γ∥ϑ. This argument vanishes at the values:

ξ1, 2 =
1

1 + θ2

(
1∓

√
1− r2(1 + θ2)

)
. (5)

These values are valid (real) if r
√
1 + θ2 < 1. When r = 1 (γ∥ = γth), photons with frequency

ξ0 = 1 (ω0 = Ωγ2th = ω2p/Ω) are emitted at zero angle. When γ∥ > γth two photons with fre-
quencies ω1 < ω0 and ω2 > ω0 are emitted at zero angle. For γ∥ ≫ γth, with accuracy up to

small terms of order r2, we have ξ1 = r2/2 (ω = ω2p/(2Ω)) and ξ2(θ) = 2/(1 + θ2) (ω2(θ) =
2Ωγ2

∥
1+θ2

).
Note that for soft photons, the unit of angle ϑ is 1, while for hard photons (θ = γ∥ϑ): γ−1

∥ .
Therefore, for soft photons at ϑ = 0, we obtain

∫
d(cosϑ) dφ = 2π, and for hard photons:∫

d(cos θ) dφ = 2π. Considering (3b), I(ξ, 0) = jβ⊥iΩ
sinϕ(ξ)
ϕ(ξ)

. Consequently, |I|2 =
β2
⊥

Ω2F (ξ1, 2).

The function F (ξ1, 2) =
sin2(πn0ϕ(ξ1, 2))

ϕ2(ξ1, 2)
, for n0 ≫ 1 is a delta-like function with a peak value of

π2n20 and a width of 1/n0, regardless of the values of ξ1, 2. This line shape F (ξ1, 2) of radiation
at zero angle is the same for both soft and hard photons.

3. Number of radiated photons

To an accuracy of order 1/n0, the formula

F (ξ1, 2) = π2n0δ
(
ϕ(ξ1, 2)

)
,

δ(ξ1, 2) =
δ(ξ − ξ1, 2)

|ϕ′(ξ)|ξ=ξ1, 2

=
δ(ξ − ξ1, 2)

1/2− ξ1/ξ
2
1, 2

=

{
ξ1δ(ξ − ξ1) for ξ1,
2δ(ξ − ξ2) for ξ2.

,

ϕ(ξ) =
ξ

2
− 1 +

ξ1
ξ
,

(6)

can be used, where it is considered that ξ1 ≪ 1 < ξ2 = 2.
Thus, after integration, for soft and hard photons we have:

N(ξ1) = 2παn0β
2
⊥

(ωp
2Ω

)4
, (7a)

N(ξ2) = 2παn0q
2
∥, q∥ = β⊥γ∥ =

q√
Q
. (7b)

It should be noted that, at a specific energy of the charged particle, the number of soft and
hard photons emitted at zero angle is the same.
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