

Istituto Nazionale di Fisica Nucleare

Electromagnetic Processes in Strong Crystalline Fields: Toward a High-Performance Calorimeter for Future HEP Experiments

Laura BandieraINFN Ferrara

On behalf of the OREO collaboration

[bandiera@fe.infn.it](mailto:romagnoni@fe.infn.it)

Channeling2024 Riccione 12/09/2024

R&D financed by INFN CSN5 2023-2025 Included in **H2020AidaInnova WP8 task 3.1 DRD6 Calorimetry WP3 task 3.1**

Crystal strong electrostatic potential

A crystal channel

Extremely strong electric fields

4

e- - comoving frame

In the comoving frame, the **Lorentz contracted Electric field** can be computed as:

E = γE*

Being the Axial field of high-Z crystals *E* **≈ 10¹¹ V/cm**

lab. frame

e- - comoving frame

In the comoving frame, the **Lorentz contracted Electric field** can be computed as:

 $E^* = vE$

Being the Axial field of high-Z crystals $E \approx 10^{11}$ **V/cm**

At beam energies > 10 GeV, E* can reach the **Critical Schwinger QED field**:

Magnetars $B \approx 10^{10}$ *T*

$$
E_0 = m^2 c^3 / e \hbar \simeq 1.3 \times 10^{16} V/cm
$$

above which electrodynamics becomes non linear

Strong fields in Nature and Labs

With crystals, the **Critical Schwinger Field** is accessible with no need of multi-TeV beams or ultra-intense lasers **Crystals are powerful tools to test Strong Field QED!!**

Enhanced radiation emission ..

 \diamond **The Strong Field effect increase with initial particle energy**

Angular range*:*

up to 1° of misalignment between particle direction and crystal axes

Strong increase in the energy radiated by the electrons!

First observation in a Ge crystal at CERN by A. Belkacem et al. Phys. Rev Lett. 54 (1985) 25 ⁸

..and what about photons…

…increased e+e- pair production by high-energy photons

Enhancement, η

Enhancement of e+e- pair production in a Tungsten crystal axially oriented – compared to random orientation Vs. photon energy

NA43 & NA48 @CERN

Strong increase of the pair production probability by High-energy photons in an oriented crystal

First observation in a Ge crystal at CERN by A. Belkacem et al., Phys. Rev. Lett. 58 (1987) 1196 ¹⁰

Electromagnetic shower

Radiation Length X₀ of a medium is defined as: distance over which electron energy reduced to *e* **times. Characterizes the shower depth.**

Strong Crystal Fields: Electromagnetic shower acceleration…..

Radiation length reduction

o **X0 decreases with Energy increase.**

- o **Θmax =V0/m (mrad)**
- o **few mrad up to 0.5°-1°**
- \circ Depends poorly on particle energy.

The CMS Crystal ECAL

The CMS Electromagnetic Calorimeter at CERN LHC is composed of 77200 lead tungstate (PbWO4 or PWO) scintillator crystals

Higgs boson decay in two photons

Crystal Electromagnetic Calorimeter

At the precision frontiers in fixed target experiments and for light dark matter search in Beam Dump

 $\begin{picture}(120,140)(-30,140)(-30,140){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}} \put(15,14){\line(1,0){100}}$ Beam Target `FRI` **Thysics** Beyond Colliders

In space-borne telescope for VHE and UHE gamma-ray observation

LYSO

BGO

Orienting the e.m. calorimeter

L. Bandiera et al., Phys. Rev. Lett. 121 (2018) 021603

Crystal investigated: Lead tungstate (PbWO_{$_4$})

- Scintillator, with well-peaked light emission in the blue
- Optically transparent
- Exploited by the CMS ECal \rightarrow well known
- High density, high $Z X_0 = 8.9$ mm
- **Radiation hard**
- Cheap fabrication into big samples
- **Good crystalline quality (mosaic spread 0.1 mrad)**
- Axes properties:

Maximum of Strong Field V0/m ≈1 mrad

High-Z crystal for compact detectors

PWO-I, PWO-II**, PWO-UF*** Moltech*, M. Korjik** and Crytur****

Crystal Characterization

- Mosaicity spread ≤ 0.1 mrad;
- axis alignment on different position changes of $<$ 0.2 mrad $<$ V_o/m

Oriented crystals in Geant4 simulations

The electromagnetic shower is simulated using the **Geant4** toolkit in which the cross sections for **bremsstrahlung and pair production are rescaled** in agreement with a full Monte Carlo code including the strong field effects in crystals.

L. Bandiera, V.V.Haurylavets, V. Tikhomirov NIM A 936 (2019) p.124-126

Marie Curie Individual fellow https://www.fe.infn.it/trillion/ 22

E.m. shower development in an oriented PWO

- peak is at smaller depth
- peak depth is essentially independent on the primary energy and type
- effect gradually decreases as the shower develops
- **L. Bandiera et al., NIM A 936 (2019) p.124-126 L. Bandiera et al., Front. Phys. (2023) doi.org/10.3389/fphy.2023.1254020**

Where we started… first result presented at Channeling2018

A 2x55x4 mm³ strip-like PWO crystal with the largest faces oriented parallel to the (100) planes was selected for the experiment. **4 mm length** along the beam direction corresponds to about $0.45 X_0$.

Where we started… first result presented at Channeling2018

Test on single oriented crystals with e- @CERN SPS

STORM 2021-2022 project financed by INFN ²⁶

e- & γ @ 10-150 GeV CERN SPS NA H2 (Geneve) *STORM – STrOng cRystalline electroMagentic field*

Experiment & Monte Carlo – Calorimeter data

Experiment & Monte Carlo – Scintillation light

Angular range of the effect

N.B. Sample from CMS ECAL prototype of 15 X₀ It was measured with XRD to be already axially oriented within 1 °

Measurement with a VHE gamma beam

P. Monti-Guarnieri et al., PoS ICHEP2022 (342) 414 (2022)

CERN SPS NA H2 beamline Beam: γ @5-100 GeV Crystal: 1 X0 PWO

M. Soldani et al., arXiv:2404.12016v1

Energy deposited inside the crystal by the photon beam in axial orientation as measured by SiPM vs. the photon energy

Work done in collaboration with the HIKE/KLEVER&CRILIN team

The *ORiEnted calOrimeter* project

Challenge:

• Construction of an oriented layer of many crystals

OREO - ORiEnted calOrimeter OREO 2023-2025 project financed by INFN

Construction of the OREO prototype **3x3 matrix of ultrafast PWO (PWO-UF)**

A newly developed PWO-Ultrafast is a candidate future detectors

Scintillation decay decreased down to the subnanosecond (0.7 ns)

M. Korjik et al., NIM A,1034(2022)166781

Orientation control: handling system based on motorized optomechanical components (Thorlabs) and autocollimator laser

Crystals were coated with a reflective paint and the glued together.

Misalignment $<$ 0.3 mrad ($<$ Θ_{max})

Readout: SiPM matrix, each coupled to one of the three crystals

PbWO₄

 $[001]$ $[010]$

[100]

First test of the OREO prototype **3x3 matrix of ultrafast PWO (PWO-UF)**

Just to mention electromagnetic processes are modified

not only in PWO...

- Bremsstrahlung radiation enhancement in axial orientation in the [0, 150] MeV range (e- beam @855 MeV - below Strong Field threshold), which **indicates an enhancement of the electromagnetic processes inside the axially oriented crystals.**
- o **First measurements ever of radiation enhancement** due to coherent orientational effects for all these **scintillator crystals (PWO, BGO, CsI, YAG(Ce), BaF2)**.

L. Bandiera et al., NIM A 1060 (2024) 169022 35

…also in Cherenkov crystals

P. Monti-Guarnieri et al., PoS ICHEP2022 (342) 414 (2022)

CERN SPS NA H2 beamline Beam: γ @5-100 GeV Crystal: 2 X₀ PbF2^{*}, 1 X₀ PWO

Energy deposited inside the crystal by the photon beam (of mixed energy) as measured by SiPM for different crystal-to-beam orientations.

Pietro Monti-Guarnieri (UniInsubria&INFN MiB) Ms. Thesis

Work done in collaboration with the CRILIN&HIKE team

Exciting times ahead!

several progress in the years in

- probing crystalline SF effects
- o developing sound simulation tools + integration with Geant4
- designing and building an operational longitudinally segmented, oriented-calorimeter prototype

keep track of the lattice orientation to avoid uncontrolled lattice effects when building a crystal calorimeter!

Exciting times ahead!

several progress in the years in

- probing crystalline SF effects
- o developing sound simulation tools + integration with Geant4
- \circ designing and building segmented, oriented-c getting ready for integration in

keep track of the lattice orientation to avoid uncontrolled lattice effects when building a crystal calorimeter!

38

 $\begin{aligned} \underbrace{\hspace{2cm}} & E_{cm} = \sqrt{2m_{target}E_{beam}} \end{aligned}$

Beam

Beam 1

Target

 $E_{cm} = \sqrt{4E_1E_2}$

Forward-geometry accelerator-based experiments

fixed-target collider forward region

- Improved shower containment ⇒ Energy resolution
- Higher γ efficiency ⇒ Ideal for γ vetoes
- Better γ/hadron discrimination
- **L. Bandiera et al., Frontiers In Physics 10.3389/fphy.2023.1254020 P. Monti Guarnieri et al., arXiv preprint arXiv:2405.11302**

….in High-Energy Physics

in **dark matter search**, to realize **compact active beam dump or target** with an **increased sensitivity to light dark matter**. If a dark photon is created in a shower initiated by an e^{\pm} , it can be detected only if it survives for the remaining dump or target length. The shorter the length, the higher the sensitivity. $-$ Interest by the **POKER collaboration with NA64 @SPS**, where the PWO calorimeter will be either the target and the missing energy detector

Longitudinally segmented e.m. calorimeters*:*

- To realize **compact high-resolution em calorimeter** in forward geometry (e.g. HIKE SAC)
- In isotropic calorimeter -> **need to control the orientation to avoid unexpected effects.**

Longitudinally Segmented Crystal Calorimeter

for future Colliders

Exciting times ahead!

several progress in the years in

- probing crystalline SF effects
- o developing sound simulation tools + integration with Geant4
- \circ designing and building segmented, oriented-c getting ready for integration in

space-borne γ-ray (VHE/UHE) detectors with pointing systems à la Fermi LAT

- \circ reduced thickness \Rightarrow more payload available for transverse size increase \Rightarrow acceptance
- improved shower containment \Rightarrow less longitudinal leakage
- higher γ efficiency
- better γ/hadron discrimination
	- **L. Bandiera et al., Frontiers In Physics 10.3389/fphy.2023.1254020 P. Monti Guarnieri et al., arXiv preprint arXiv:2405.11302** ⁴⁰

…. astroparticle physics… take FERMI-LAT as an example

 γ_I incoming gamma ray

Converter-tracker

system

W-Si Electromagnetic Calorimeter made of CsI crystals (8.6 X₀) electron-positron pair

All of these materials have a crystalline structure and can be oriented along some preferred lattice direction

Ultra-compact space-borne satellite to detect VHE gamma-rays

- **Above 1 GeV**, the primary challenge is the **very limited photon flux**. Reducing the longitudinal dimension of the calorimeter would enable **the increase of the detector area** (to **see more photons**!) at no net cost in weight
- Improved energy and angular resolution to **investigate the GeV gamma-ray sky open questions**!

We started a collaboration with **Fermi-LAT, Italian Space Agency** and **Brown University** researchers

L. Bandiera et al., Frontiers In Physics 10.3389/fphy.2023.1254020 P. Monti Guarnieri et al., arXiv preprint arXiv:2405.11302 ⁴²

The INFN OREO team

INFN Ferrara and University of Ferrara

L. Bandiera, N. Canale, V. Guidi, L. Malagutti, A. Mazzolari, R. Negrello, M. Romagnoni, A. Sytov

 INFN Legnaro Labs and University of Padua

D. De Salvador, F. Sgarbossa, D. Valsani

 INFN Milan Bicocca and Insubria University

S. Carsi, G. Lezzani, P. Monti-Guarnieri, M. Prest, A. Selmi, E. Vallazza

External partners:

M. Moulson & M. Soldani (INFN LNF/NA62/HIKE), P. Monti Guarnieri (UniTrieste and INFN Trieste), F. Davì, D. Rinaldi & L. Montalto (UNIPVM)

The INFN OREO team

Since August 2024, OREO has become a task of the program of the International CERN Collaboration DRD6 Calorimetry

INFN Ferrara and University of Ferrara

L. Bandiera, N. Canale, V. Guidi, L. Malagutti, A. Mazzolari, R. Negrello, M. Romagnoni, A. Sytov

 INFN Legnaro Labs and University of Padua

D. De Salvador, F. Sgarbossa, D. Valsani

 INFN Milan Bicocca and Insubria University

S. Carsi, G. Lezzani, P. Monti-Guarnieri, M. Prest, A. Selmi, E. Vallazza

External partners:

M. Moulson & M. Soldani (INFN LNF/NA62/HIKE), P. Monti Guarnieri (UniTrieste and INFN Trieste), F. Davì, D. Rinaldi & L. Montalto (UNIPVM) 44

