Planar Channeling of 855 MeV Electrons in a Boron-doped (110) Diamond Undulator

Hartmut Backe Institute for Nuclear Physics Johannes Gutenberg University of Mainz

10th International Conference "Charged & Neutral Particles Channeling Phenomena", 8-13 Sept. 2024, Riccione (RN) (Italy)

Outline

- 1. Motivation
- 2. Experiments with a Strained Layer $Si_{1-x}Ge_x$ (110) Undulator - Revisited
- 3. Examination of a Boron Doped (110) Diamond Undulator at MAMI
- 4. Scatter Distribution at Oblique incidence
- 5. Conclusions

1. Motivation

Feasibility of a photon source with **micro-undulators** and medium energy **electron beams?**

W. Greiner, A.V. Solov'yov, and A.V. Korol et al.

Obstacle

2. Experiments with a Strained Layer Si_{1-x}Ge_x (110) Undulator -Revisited

H. Backe et al., Nucl. Inst. Meth. in Phys. Res. B 309 (2013) 37 and Journal of Physics: Conference Series **438** (2013) 012017

Dopant concentration effects on Si_{1-x}Ge_x crystals

Matthew D. Dickers, et al., Eur. Phys. J. D (2024) 78:77

Periodic Graded Composition Strained Layer Si_{1-x}Ge_x Crystals

The Aarhus Undulator Crystal

John Lundsgaard Hansen, Arne Nylandsted, Ulrik I. Uggerhøj MBE-Group Department of Physics and Astronomy University of Aarhus

Floor Plan of the Mainz Microtron MAMI Facility

Basic Setup for the Experiments with

Measured Raw Spectra

Conclusion of the silicon undulator experiments

A successful prove-of-principle study was performed for a $Si_{1-x}Ge_x$ undulator with the 855 MeV electron beam of MAMI via observation of synchrotron radiation

The undulator peak could not be observed because of the very short de-channeling length in the periodically bent crystal of 4-6 μ m

The undulator was probably designed for experiments at BTF at Frascati with 500 MeV positrons for which the de-channeling length is with 460 μ m much larger

Unfortunately, the Molecular Beam Epitaxy (MBE) laboratory at the University of Aarhus was closed.

3.Examination of a Boron Doped (110) Diamond Undulator at MAMI

Lattice Expansion as Function of Boron Density

Collaboration with Thu Ni Tran Caliste, Rebecca Dowek, and Jose Baruchel from ESRF 4 Period Diamond Undulator grown by Chemical Vapor Deposition

Flip Configurations of the Potential

Photon energy $\hbar\omega$ [MeV]

Definition of Observation Directions

Experimental Results of Peak Search

4. Scatter Distribution at Oblique Incidence on a Plane (110) Diamond Crystal of 76.4 μm thickness

Principle of the Experiment

Experimental Setup

Experimental Scatter Distribution as Function of Target Tilt Angle ψ_x

Simulated scatter distributions at tilt angles ψ_x Experimental Scatter Distributions

Dark brown distributions are fractions which rechanneled and experienced channeling antil the crystal exit

Scattering distributions in (a) according to Particle Data Group Preliminary Results

Increasing mean free path length by a factor of 2

Acknowledgments

Experiments:

Werner Lauth Institute for Nuclear Physics, Mainz Pascal Klag Institute for Nuclear Physics, Mainz Thu Ni Tran Caliste ESRF, Grenoble

Theory: A.V. Solov'yov, and A.V. Korol et al. within the EU TECHNO-CLS — HORIZON-EIC-2021-PATHFINDER Project See also https://www.linkedin.com/company/techno-cls-project/

5. Conclusions

- 1. A prove-of-principle study with a $Si_{1-x}Ge_x$ undulator indicated that undulators can be studied with the MAMI electron beam via radiation emission – no peak but synchrotron radiation
- 2. For a boron doped diamond undulator no characteristic undulator radiation was observed at all
- Production of Si_{1-x}Ge_x undulators with Molecular Beam Epitaxy, and boron doped diamond undulators grown by Chemical Vapor Deposition is obviously a challenge
- 4. A quenching was observed of the width of the scattering distribution for a plane 76.4 μm thick (110) diamond crystal at oblique incidence (preliminary)
- A much better diagnostic tool for undulators may be in the future the 530 MeV MAMI positron beam (Pascal Klag)

For details see arXiv:2404.15376v2

Spectra of Undulator for Model Trajectory

Observation angle θ_x with respect to [110] direction of backing

Construction of Model Trajectory

Experimental Spectra taken with Nal Detector

De-channeling Lengths for Electrons and Positrons

A.V. Korol, A.V. Solov'yov, W. Greiner, *Channeling and Radiation in Periodically Bent Crystals*, 2nd edn. (Springer Verlag, Berlin Heidelberg, 2014), Fig. 6.2

Electron de-channeling length at 0.855 GeV L_d(0)= 18 μm

Positron de-channeling length at 0.530 GeV L_d(0)= 390 μm

X-ray topography of the Si_xGe_{1-x} undulator with (220) reflection at ESRF (Grenoble)

Snap-shot at a fixed rocking position Nearly perfect crystal

Snap-shot at a fixed rocking position $Si_{1-x}Ge_x$ undulator crystal

Preliminary results of measurements at ESRF indicate a very dense networks of misfit dislocations

Courtesy of Jürgen Härtwig and Thu Nhi Tran Thi

Synchrotron-like Radiation Emission from Finite Arc Element of Undulator

Outline

- 1. Motivation
- 2. Experiments with a Strained Layer $Si_{1-x}Ge_x$ (110) Undulator - Revisited
- 3. Examination of a Boron Doped (110) Diamond Undulator at MAMI
- 4. Scatter Distribution at Oblique incidence
- 5. Remark Addressing Theoreticians
- 6. Conclusions

In Honor of Prof. Dr. Dr. h.c. mult. Walter Greiner

* October 29, 1935; † October 5, 2016

At FIAS with Andrey V. Solov'yov and Andrei V. Korol

5. A Remark of an Experimentalist addressing Theoreticians: A Fast Simulation Explorer running on a PC would be most welcome

Why?

Not mainly for optimizing designs of undulators, however, primarily for a fast feedback for decisions during the course of an experiment

The Experimental Multi Parameter Space

Totally 2×7 parameters