

Ultra-high acceleration gradient using structured nanomaterials

Alexei Sytov and J. Resta-López on behalf of the NanoAcc collaboration

Channeling 2024 8-13 September 2024

Applications

High-acceleration gradient. Novel concepts

Challenges and solutions of WFA in solids

LWFA in graphene and CNT based structures

Why graphene and CNTs?

- Special thermo-mechanical and optoelectronic properties.
- Relatively easy ionization of conduction electrons to generate a high density plasma ($n_e \sim 10^{20} 10^{22} \text{ cm}^{-3}$).
- Advances in nanofabrication techniques. Flexibility to fabricate interesting geometries.
- High thermal and mechanical robustness
 - 0 Melting point of a freestanding single-tip CNT ~ 3000 4000 K.
 - Tensile strength > 100 GPa (100 x Stainless steel).
- Hollow structures that allow good laser transmission.

LWFA in graphene

TeV/m "Catapult" (ballistic) accelerator with graphene layers

C. Bontoiu et al., Sci. Rep. **13** (2023) 1330 C. Bontoiu et al., Proc. of IPAC 2022 Laser parameters. UV range

Quantity	Value	Unit
Wavelength, λ	100	nm
Period, T	0.334	fs
Peak intensity, I_0	10 ²¹	W/cm ²
Spot size (FWHM), w_0	0.4	μm
Focal point, y_f	0.25	μm
Pulse energy, E	8	mJ
Pulse length (9 cycles), Δt	3	fs
Potential vector, a_0	2.7	_

Challenging parameters

Lithographic and etching techniques

LWFA in graphene

TeV/m "Catapult" (ballistic) accelerator with graphene layers. PIC Simulations

LWFA in graphene

TeV/m "Catapult" (ballistic) accelerator with graphene layers. PIC Simulations

- Method to generate 1-10 MeV sub-femtosecond e-bunches
- Several bunches generated before the full damage of the structure (~ 100 fs)
- Potential application: injector in a staged accelerator or FEL?

Plasma acceleration in hollow vertically aligned carbon nanotubes: idea of a setup

LWFA acceleration in CNT based

9 shells with 546 CNT bundles (red points) concentrically aligned. Each red point contains 25 CNTs

Laser pulse

Laser parameters (IR range)

Parameter	Value	Unit
Wavelength, λ	800	nm
Period, T	2.66	fs
Energy, E	301	mJ
Peak Intensity, I_0	1021	W/cm ²
Potential vector, a_0	21.6	-
Pulse Length, Δt	8	fs
Spot Size, w ₀	1.5	μm

Parameters more relaxed than in the graphene multilayer case and technologically feasible

Cristian Bontoiu, PhD Thesis

LWFA acceleration in CNT based targets

Bunch phase space at extraction

After 3 cycles (Δ t=8 fs)

Ultra-short e-pulses, Δ t=3.8 fs (FWHM) <E_{kin}>=31 MeV gain in ~ 17 μ m Q=0.8 nC

RMS vertical emittance: 0.4 μ m-rad RMS horizontal emittance: 0.3 μ m-rad

Nanotubes

The collaboration is currently preparing optimal targets for proof-of-principle experiment, investigating manufacturing techniques.

Investigation of different configurations

Example of Chemical Vapor Deposition (CVD) growth of CNT forest in the TITAN Lab at the INFN

Ilaria Rago, Gianluca Cavoto et al. *R.P. Yadav,..., G. Cavoto NIM A 1060, 169081 (2024)

Channeling 2024

LWFA acceleration in CNT based targets

Non-aligned CNT bundles

We found similar results with uniformly distributed targets of effective density $n_e \sim 10^{20}$ cm⁻³

30 shells with 535 CNT bundles (red points) distributed uniformly

LWFA acceleration in CNT based targets

Non-aligned CNT bundles. PIConGPU simulations

Bunch phase space at extraction

After 3 cycles (Δ t=8 fs)

Ultra-short e-pulses, Δ t=3.8 fs (FWHM) <E_{kin}>=27.7 MeV gain in ~ 17 μ m Q=0.8 nC RMS vertical emittance: 0.4 μ m-rad RMS horizontal emittance: 0.25 μ m-rad

Channeling 2024

Idea of experimental setup

Potential applications

NanoAcc collaboration

Towards an experimental test of LWFA in CNT based structures

University of Valencia, Spain: Javier Resta-López, Pablo Martín-Luna, Juan Rodríguez-Pérez Centro de Láseres Pulsados (CLPU), Salamanca, Spain: Giancarlo Gatti Federal University of Health Sciences of Porto alegre, Brazil: Alexandre Bonatto Cl and University of Manchester, UK: Oznur Apsimon, Guoxing Xia, Jiaqi Zhang Cl and University of Liverpool, UK: Bifeng Lei, Carsten P. Welsch INFN, Ferrara: Laura Bandiera, Alexei Sytov INFN, Milano: Illya Drebot INFN, Roma: Ilaria Rago Sapienza University of Rome, Italy: Gianluca Cavoto, Ravi Prakash Yadav National Technical University of Athens, Greece: Konstantinos Valagiannopoulos CERN, Switzerland: Volodymyr Rodin

Still open to new collaborators

NanoAc 2024

Second workshop focused on "Application of Nanostructures in the field of Accelerator Physics"

Invited speakers:

Sultan Dabagov (INFN, Italy) Giancarlo Gatti (CLPU, Spain) Jorge Vieira (IST, Portugal) Frank Zimmermann (CERN, CH)

Now open for registration and contributions

https://forum.icmuv.uv.es/event/3/

NanoAc 2024

Dates: 17 – 18 September 2024

Venue: ICMUV – University of Valencia, Parc Científic, Valencia, Spain

Topics

Plasmonic particle acceleration
Solid-state wakefield plasma acceleration

□ Particle channelling in CNTs and crystals

Gen—T

CNT-based cathodes

Beam diagnostics based on nanomaterials

X-ray sources based on nanomaterials

☐ Simulations of nanostructured plasmas

Co-chairs

Laura Bandiera (INFN, Sezione di Ferrara, Italy) Alexandre Bonatto (UFCSPA, Porto Alegre, Brazil) Cristian Bontoiu (Cockcroft Institute, University of Liverpool, UK) Pablo Martín-Luna (IFIC, University of Valencia-CSIC, Spain) Javier Resta-López (ICMUV-University of Valencia, Spain) Guoxing Xia (Cockcroft Institute, University of Manchester, UK)

https://forum.icmuv.uv.es/event/3/

Vniver§itat

öValència

Thank you for attention!

Acceleration in solid-state structures. The beginning

Crystal channeling acceleration

T. Tajima and M. Cavenago, PRL **59** (1987) 1440

- Accelerating fields ~1-100 TV/m
- Channelled particles confined to the rows of atoms by electric fields of the order of 10 -100 GV/m
- Crystals excited by ultra-short X-ray pulses. Laser power ~ TW or PW
- Crystal have been used in accelerators as collimators and bending elements

Very challenging!

Channeling 2024