

Study of a positron source for FCC-ee based on oriented crystals - Setup optimization and experimental measurements

Gianfranco Paternò1

On Behalf of L. Bandiera¹, A. Sytov, N. Canale¹, M. Romagnoni¹, A. Mazzolari¹, R. Negrello¹, L. Malagutti¹, V. Guidi¹, F. Alharthi², I. Chaikovska², V. Mytrochenko², R. Chehab², Y. Wang², D. Boccanfuso³, O. M. Iorio³, D. De Salvador⁴, F. Sgarbossa⁴, D. Valzani⁴, M. Soldani⁵, S. Bertelli⁵, M. Prest⁶, E. Vallazza⁶, S. Carsi⁶, A. Selmi⁶, S. Mangiacavalli⁶, G. Saibene⁶, G. Zuccalà⁶, P. Monti-Guarnieri⁷

INFN and University of Ferrara, Italy CNRS/IN2P3 Laboratoire de Physique des 2 Infinis Irene Joliot-Curie (IJCLab), France INFN and Universiy of Napoli, Italy INFN-LNL and Universiy of Padova, Italy INFN-LNF, Italy⁶INFN Milano Bicocca and Universiy of Insubria (Como), Italy
-INFN and University of Trieste, Italy

Gianfranco Paternò9/9/2024 Channeling 2024, Riccione, 9-13 September 2024

Outlook

- \bullet Short description of positron sources and e+ production schemes
- \bullet Novel optimization approach, based on an experimentally validated simulation framework
- •Optimized solutions for FCC-ee positron source @ 6 GeV

Why are positron sources critical components of thefuture colliders?

$$
L = \frac{N_1 N_2 f n_b}{2\pi \sqrt{\sigma_{x,1}^2 + \sigma_{x,2}^2} \sqrt{\sigma_{y,1}^2 + \sigma_{y,2}^2}}
$$

High luminosity at the future machines (especially linear ones) → needs **high average and peak eand e+ currents** and **small emittances**.

e+ are produced within large 6D phase space (e+/e- pairs produced in a target-converter)

Current => limited in conventional way by the target characteristics

- Average energy deposition => target heating/melting
- Peak Energy Deposition Density (PEDD): inhomogeneous and instantaneous energy deposition \rightarrow thermo-mechanical stresses due to temperature gradient *Thermal dynamics and shock waves. Fatigue limit resulting from cycling loading. Material damages. Activation (handling issues)*

Emittance → at the production 6D phase space is very large

After defined by the e+ capture system acceptance.

e+ source set the constraints for the peak and average current, the emittance, the damping time,the repetition frequency → **Luminosity!**

Basic scheme of a positron source

High production e+ divergence → appropriate **capture**, **focusing** and **post acceleration** sections need to be integrated immediately after the target

Accepted e+ yield is a function of primary beam characteristics + target + capture system + DR acceptance

FCC / FCC-ee

- Future CERN collider post LHC ~ 91 Km of circumference
- Stages: **FCC-ee**, Fcc-eh, FCC-hh
- High luminosity: up to 230×10^{34} cm⁻²s⁻¹

Gianfranco PaternòChanneling 2024, Riccione, 9-13 September 2024

FCC-ee positron source: current requirements

The complete filling for **Z running** [→] Requirement ∼2.75 [⨯] 1010 e+/bunch (4.4 nC) at the Damping Ring (DR)

The conceptual design of the positron source is carried out to have **5.4 nC e+/bunch at the DR*** → **13.5 nC e+/bunch at the exit of the Positron Linac**, considering 60% of losses due to transport, collimation and injection in the DR (safety margin of 2.5). This e+ charge has to be obtained from:

*positron flux of [∼]**1.35**⨯**10¹³ ^e⁺/s.** *Demonstrated at SLC (a world record for existing accelerators):* ∼**6** ⨯**10¹²** *e+/s*

Crystal-based positron source

Originally proposed by R. Chehab, A. Variola, V. Strakhovenko and X. Artru

R. Chehab et al., in Proc. of the 1989 IEEE Particle Accelerator Conf., 1989, pp. 283–285

oriented crystallinetarget

Use of lattice coherent effects in oriented crystals: **channeling** and **over barrier motion** (and **photon generation**) **→ typical angular range of few mrad at 6 GeV for <111> axis in W**

Hybrid scheme

Novel production scheme for positron sources:

- Enhancement of (soft) photon generation in (high Z) oriented crystals \rightarrow enhancement of pair production / positron charge
- Lower energy deposit and PEDD (with hybrid scheme) in target \rightarrow lower heating and thermo-mechanical stress (target reliability)

Idea of X. Artru et al., NIM B 266 (2008) 3868 Test at KEK in Japan with a W crystal NIMB 402 (2017) 58

Previous optimization study of a hybrid positron source for FCC-ee @ 6 GeV

Gianfranco Paternò8 Channeling 2024, Riccione, 9-13 September 2024 **Channeling simulation** in Geant4: novel *G4ChannelingFastSimModel* and *G4BaierKatkov* classes were developed and embedded in Geant4 (since 11.2.0 version). These models are based on CRYSTALRAD code

Main conception: simulation of classical trajectories of charged particles in a crystal in averaged atomic potential of planes or axes. Multiple and single scattering, as well as ionization, simulation at every step. Photon emission simulated through MC integration of Baier-Katkov formula (**see A. Sytov presentation**)

 This model together with standard or pre-calculated (through B-K) pairproduction model, allows us to simulate a wide **variety of applications**

coherent pair productionmodel under test…

*A.I. Sytov, V.V. Tikhomirov. NIM B 355 (2015) 383–386.L. Bandiera, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 355, 44 (2015)*A. Sytov et al. Journal of the Korean Physical Society 83, 132–139 (2023) A. I. Sytov, V. V. Tikhomirov, and L. Bandiera. PRAB 22, 064601 (2019)*

$$
dN = \omega d\omega d\Omega \frac{\alpha}{4\pi^2} \iint dt_1 dt_2 \frac{\left[\left(E^2 + {E'}^2 \right) (\nu_1 \nu_2 - 1) + \omega^2 / \gamma^2 \right]}{2E'^2} e^{-ik'(x_1 - x_2)}
$$

Validation of Geant4 channeling model against experimental data

Setup @CERN PS T9 beamline

Set-up similar to the one desribed in: L. Bandiera et al., Eur. Phys. J. C 82, 699 (2022), where there is a also compoarison with simulations in which coherent interactions of e- in the W crystal were simulated with CRYSTAL code (by V. Tikhomirov).

Radiative energy loss measured by the EcalGeant4, axial 0.35 Geant4, random measure, axial 0.30 measure, random $\begin{array}{c} 20.25 \\ 0.20 \\ = 0.15 \end{array}$ \times \leq 0.10 0.05 0.00 5 6 E (GeV)

Simulation performed with Geant4 taking advantage of the novel *G4BaierKatkov* and *G4ChannelingFastSimModel*.

Simulation of the e+ production stage: Geant4 **PositronSource** application

- \bullet It allow us to simulate a **crystal-based positron source**.
- . The code relies on *G4ChannelingFastSimModel* or a phase-space (e.g. from CRYSTAL code) can be imported.
- . A collimator or magnetic fields can be included in the simulation.
- . Scoring of particle phase space at exit of crystals and of energy distribution inside them.
- . The application is fully compatible with **multi-threading**.

Simulation of the capture / pre-acceleration stages

Simulation of the capture / pre-acceleration stages

 Gianfranco Paternò13Channeling 2024, Riccione, 9-13 September 2024
13

Simulation results: e+ yield after the positron linac

Positron yield, energy deposit and PEDD can be reduced tuning radiator *thickness (T), amorphous thickness (L)* and the distance between them (*D)*

9/9/2024

Gianfranco Paternò14Channeling 2024, Riccione, 9-13 September 2024 **14Channeling 2024**

 1.2

 $\begin{bmatrix} 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}$
Power Deposited [kW]

 -0.4

DSSSCR

D550cm

Department

Simulation results: e+ yield after the positron linac

The **yield** after the capture system (and the Edep, which is however lower than for conventional) **increases with L**. The PEDD is almost constant.

Simulation results: e+ yield after the positron linac

Simulation studies converge to a **total W thickness of about 12-13 mm** (~3.4 / 3.7 X0) → need **D**∼**0** (2 targets) or **1 thick single-crystal**

The Single Crystal **PEDD** is **acceptable** considering FCC-ee parameters [max 10.5 J/g/pulse (max measured for W 35 J/g)].

We can use **just one device** to optimize the positron source of FCC-ee

Integration and operation of the crystal target: effect of misalignments and high temperature

- \bullet **Crystal heating:** The photon yield drops insignificantly for temperatures ∼600 K
- • **Crystal alignment:** No goniometer inside the AMD-HTS. The typical precision of the pre-alignment $\mathsf{procedure} \sim 1$ mrad (margins of improvement).
- • **Crystal quality:** The crystalline quality of [∼] 10 mm thick W sample is lower than for a thin sample \rightarrow lower yield, but larger acceptance angles.

At larger scale: separate crystal domains (on 10x10x10 mm³, total angular distribution of all the crystals domains is within 8.7 mrad)

Experimental studies and validation are needed! (tests @MAMI, DESY, CERN, potential target design validation at P3)

Summary and **Conclusions**

- •^A**reliable simulation framework** from the target to the positron linac **is available**.
- •The **design** of a **crystal-based positron source** for the FCC-ee @ **6 GeV** is well advanced.
- •**Next steps**: Carry on the **optimization @ 2.86 GeV** (see **F. Alharthi** presentation)
- • **Next steps**: **integration studies** and **beam tests** with potential **proof-of-principle** at P³ experiment @ PSI (and future CHART projects)

Thank you

My email address: paterno@fe.infn.it

Further contact:

Laura Bandiera (INFN-Ferrara) bandiera@fe.infn.it

Iryna Chaikovska (IJCLab) iryna.chaikovska@ijclab.in2p3.fr

Gianfranco Paternò19Channeling 2024, Riccione, 9-13 September 20249/9/2