

DES SCIENCES

université

Université de Paris

FCC-ee positron source: *from convectional to crystal based*.

Fahad A. Alharthi

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) CNRS, Université Paris-Saclay alharthi@ijclab.in2p3.fr

<u>F. Alharthi</u>, I. Chaikovska, R. Chehab, V. Mytrochenko, Y. Wang, L. Bandiera, D. Boccanfuso, N. Canale, O. Iorio , A. Mazzolari, R. Negrello, G. Paternò, M. Romagnoni, A. Sytov

- FCC-ee pre-injector latest layout.
- Conventional positron source (Target , Matching device , Capture linac)
- Beam dynamics and tracking.
- Crystal based positron source (Innovative, alternative to the conventional scheme).
- Summary and conclusion.

- Key factors for high e+ yield at DR:
 - Primary e- energy
 - Target design
 - Magnetic strength around the target and capture linac
 - Transverse aperture of the capture linac.

The use of an HTS solenoid with a peak field of ~
 12. T around the target can substantially increase state-of-the-art e+ yield, by one order of magnitude.

SLC 1989 - 1998	SuperKEKB 2014 - Present	FCC-ee (HTS Option) 2040s – 2060s
27 - 33	3.5	2.86
18	30	60
5.5	3.5	12.7
0.5	0.4	0.5
~30	~8	~7
2.5	0.63	~3
0.079	0.180	1.014
	SLC 1989 - 1998 27 - 33 18 5.5 0.5 0.5 ~30 2.5 0.079	SLCSuperKEKB1989 - 19982014 - Present27 - 333.518305.53.50.50.4~30~82.50.630.0790.180

Positron source : Target design

Conventional scheme (Well understood and used in current and previous positron sources) **Bremsstrahlung** -> Pair production

2.86GeV

20.0

17.5 5.07.5 10.0 12.5 15.0 Thickness [mm] Considered parameters for Positron source target:

Positron

Positron production (*high Z-material*)

amorphous

tunasten

- Energy deposition (*target heating , cooling requirements*)
- Peak Energy deposition density "PEDD" (Instantaneous, thermomechanical stress due to temperature gradient.)
- Radiation around the target (*shielding requirements*)
- Huge emittance /angular divergence (*immediate matching*)

e

density

Positron source : Matching Device (Adiabatic matching device)

09/09/2024

- <u>RF structures</u>: 2GHz L-band with aperture (2a) = 60mm , 3m long and 14MV/m.

<u>Solenoids</u>: 10 NC short solenoids
 surrounding each RF structure to create
 0.5T magnetic channel.

- <u>Chicane</u>: 4 dipoles (0.2T) to separate e- and e+, with electron stopper at the middle.

Based on RF-Track simulation

Positron linac + Damping Ring

– PL1 – M2 – PL2 – M2 – PL3 TO DR 2.86GeV

- Positron linac (PL) under optimization, composed of three sections with two matching sections :
 - PL section 1: 20 RF structures, \rightarrow **~1GeV**.
 - PL section 2: 20 RF structures, \rightarrow ~1.9 GeV.
 - PL section 3: 24 RF structures, \rightarrow ~2.86 GeV.
- New DR is under design and optimization.
- Energy/time window is used to estimate the accepted yield: $(\Delta E: \pm 2\%, \Delta t: 20 \text{ mm/c})$
- Accepted yield @ DR ~ 3.02

Longitudinal phase space and window acceptance*

* Simplified longitudinal analytical formula used to track the particles in the positron linac

 Momentum : accepted positrons ≤ 100 MeV/c Primary factor • Transverse aperture and divergence: Secondary factor.

More positrons in the low energy spectrum with lower divergence => increase the accepted yield.

Crystal based positron source

- Originally proposed by R. Chehab, A. Variola, V. Strakhovenko and X. Artru [4].
- Several experiments performed: (Orsay[5], WA103@CERN[6] and KEK[7])
 in the 1 10 GeV region.
- Three approaches have been studied experimentally.

Use of lattice coherent effects in oriented crystals <111> : channeling and over barrier motion

- Enhancement of photon generation in oriented crystals
- Soft photons will generate the soft positrons → easier to capture by matching devices.
- Lower energy deposit and PEDD in target → lower heating and thermo-mechanical stress (target reliability)

%

0.035

0.03

0.025

0.02

0.01

0.005

Efficiency [

Positron-Production

Tungsten Crysta

tandard Tungsten Pla

[8]

4 GeV e-

@ KEKB

Crystal based positron source: simulation

The whole setup was simulated through Geant4 toolkit taking advantage of GeantG4ChannelingFastSimModel [10] (*talk by A.Sytov & by G. Paternò*)

Crystal based positron source: simulation

The whole setup was simulated through Geant4 toolkit taking advantage of GeantG4ChannelingFastSimModel [10] (*talk by A.Sytov & by G. Paternò*)

Single crystal thickness optimization

Single crystal thickness optimization

Parameter	Unit	Conventional	Crystal based
Matching device peak magnetic field (@target)	Т	HTS: 14.94 (11.77) T 2r = 30~60	
Matching device aperture	mm		
Target thickness	mm	15	10
Positron yield @ target	N _{e+} /N _{e-}	7.09	7.6
Positron yield @ PL	N _{e+} /N _{e-}	3.7	3.7
Accepted yield @ DR (ΔE: 2%, Δt: 20 mm/c)	N _{e+} /N _{e-}	3.03	3.1
Primary bunch charge	nC	4.46	4.41
Target deposited power	Kw	1.14	0.73
PEDD	J/g	6.99	5.9
Emittance x/Emittance y (normalized)	mm.Rad	9.6/10.1	9.7/10.2
Energy spread @PL	%	0.8	0.8
Bunch length	mm	2.6	2.6

Work in progress

- The work is in progress to optimize the FCC-ee pre-injector and maximize the yield (<u>~3 Ne+/Ne-</u>)
- A start-to-end simulation based on the G4ChannelingFastSimModel and RF-Track code.
- Conceptual design of crystal based positron source: several options were simulated and the results converges to single thick crystal (35% lower Energy deposition, 16% lower PEDD)
- Challenges associated with single crystal scheme:
 - Quality of the thick crystal (thicker crystals => large mosaic spread)
 - Alignment and pre-alignment studies (*talk by G. Paternò*)
 - High temperature effects on the crystalline structure. (*talk by G. Paternò*)
 - Mechanical integration in the HTS.
 - Reliability and radiation induced damage.
- Next steps: Integration studies and a potential of proof of principles experiments @ PSI (P3).

PSI	B. Auchmann, P. Craievich, M. Duda, J. Kosse, M. Schaer, N. Vallis, R. Zennaro
IJCLab	F. Alharthi, I. Chaikovska, R. Chehab, V. Mytrochenko, Y. Wang
CERN	S. Doebert, A. Grudiev, A. Latina, B. Humann, A. Lechner, R. Mena Andrade, J.L. Grenard, A. Perillo Marcone, P. Sievers, Y. Zhao
INFN/Ferrara	L. Bandiera, D. Boccanfuso (INFN Naple) , N. Canale, O. Iorio (INFN Naple), A. Mazzolari, R. Negrello, G. Paternò, M. Romagnoni, A. Sytov
INFN-Milano	A. Bacci, M. Rossetti Conti
KEK	Y. Enomoto

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology) Collaboration, https://chart.ch/reports/ - CHART Scientific Report 2022: https://chart.ch/reports/

09/09/2024

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.'

European Commission

EAJADE

Horizon 2020 European Union funding for Research & Innovation

IFAST

EU Horizon 2020 GA No 101004730

Bando

Thank you for your attention!

- [1] P. Craievich, FCC Week 2024, 10-14 June
- [2] I. Chaikovska et al 2022 JINST 17 P05015
- [3] N. Vallis et al., Proof-of-principle e+ source for future colliders, Phys. Rev. Accel. Beams 27, 013401 2024
- [4] R. Chehab, F. Couchot, A. R. Nyaiesh, F. Richard, and X. Artru, Proceedings of the 1989 IEEE Particle Accelerator Conference (PAC'89), Chicago, IL, USA, 1989, p. 283.
- [5] X. Artru et al., Nucl. Instrum. Methods Phys. Res., Sect. B119, 246 (1996).
- [6] R. Chehab et al., Phys. Lett. B 525, 41 (2002).
- [7] T. Suwada et al., in the 2006 International Linear Accelerator Conference (LINAC'06), Knoxville Convention Center, TN, USA, 2006.
- [8] T. Suwada et al., Phys. Rev. ST Accel. Beams 10, 073501 Published 10 July 2007
- [9] X. Artru, I. Chaikovska, R.Chehab et al. NIM B 355 (2015)
- [10] A. Sytov et al. JKPS 83 (2023)
- [11] L. Bandiera et al., Eur. Phys. J. C (2022) 82:699
- [12] M. Soldani et al., Nucl. Instrum. Methods Phys. Res, A, vol. 1058, p. 168828, (2023)

*A safety margin of 2.5 is currently applied for the whole studies (50% losses for injection in the DR + 20% losses from target up to the end of the e+ linac)

<u>Accepted e⁺ yield</u> is a function of primary beam characteristics + target + capture system + DR acceptance

Beam energy	2.86 GeV
Bunch charge	~5.6 nC (max)
Bunch length	1 mm
Bunch transverse size	≳ 0.5 mm
	Beam energy Bunch charge Bunch length Bunch transverse size

Nb of bunches per pulse	4
Bunch separation	25 ns
Repetition rate	100 Hz
Beam power	<mark>~6.9</mark> kW (max)

 \rightarrow positron flux of $\sim 1.1 \times 10^{13} e^{+/s} (\times 2.5)$. Demonstrated at SLC (a world record for existing accelerators): $\sim 6 \times 10^{12} e^{+/s}$

HTS solenoid- and Flux Concentrator (FC)-based positron capture system

<u>Matching device</u> => a fast phase space rotation to transform the small size/high divergence in big sizes/low divergence beam

HTS solenoid integrated in the cryostat

The same HTS solenoid design and cryostat aperture as for P³ experiment (72 mm)

Flux Concentrator (FC) (SLAC, KEK, IHEP, LNF BINP)

innovative in application for e⁺ capture

Compared with FC

- Higher peak field (~15 T, ~12 T @Target)
- Larger aperture (\varnothing = 30-40 mm)
- Flexible target position and field profile
- Axially symmetric solenoid field
- DC operation

robust and reliable solution

Compared with HTS solenoid

- Lower peak field (5–7 T, \leq 1–3 T @Target)
- Smaller entrance aperture (\emptyset = 7–12 mm)
- Fixed target position (2–5 mm upstream the FC)
- Challenging pulsed power source working at high rep. rate (≥100 Hz)

Positron capture: Flux Concentrator (FC) as a matching device

Originally designed by BINP for the FCC-ee (P. Martyshkin) => FC:FCC-BINP

Dropped as no info and further studies

Originally designed by BINP for the ILC (P. Martyshkin) => FC:ILC-BINP Dropped as no info and further studies

Originally designed by KEK for the SuperKEKB => FC:SKEKB-KEK Under consideration for the FCC-ee (with and w/o Bridge Coils)

Designed by KEK for the ILC (Y. Enomoto) => FC:ILC-KEK

Under consideration for the FCC-ee

High-Temperature Superconducting (HTS) solenoid designed by PSI => HTS:FCC

Current baseline option

