The 10th International Conference "Charged & Neutral Particles Channeling Phenomena"

4th generation sources

MAX IV, Sirius, **SKIF**, ELETTRA-II, SLS-II, **ALS-U**, ESRF-EBS, HEPS, APS-U, **SYLA**, SPRing-8-II, PEPX, DIAMOND-II, Soleil-II, **PETRA-IV**

Top-up linac

SYLA complex will includes the top-up injection linac at the energy of 6 GeV. Such linac was studied and the following configuration was proposed: tree-electrode pulse electron gun with the thermionic cathode and energy of 100-120 keV, short one-gap buncher and adiabatic buncher with the output energy about 10 MeV (first front-end proposed to generate long pulse beams for injection in SR), photogun with the output energy about 10 MeV (the second front-end for the short bunches generation for the FEL mode), a number (80-90) of regular sections. It was proposed to use the standing wave (SW) 2.1 m length sections (biperiodic accelerating structure, BAS) as the regular section, but conventional SLAC-type 3 m length travelling wave (TW) sections was also studied. SW sections give it possible to have much better beam energy spectrum comparatively of the TW one.

Linac layout	Photogun + SW regular sections	RF-gun + buncher + SW regular sections	Photogun + TW regular sections	RF-gun + buncher + SW regular sections
Number of regular sections	86	86	76	76
Output beam energy, MeV	6300	6000	6100	6000
Beam current, mA	-	250	-	250
Bunch charge, pC	300	-	300	-
Output energy spectrum, FWHM, %	± 0.2-0.35	± 0,1	± 1-1.5	± 3
Output transverse emittance, nm∙rad	0.3	1,5	5	10000
Bunch length, mm	0,3	12-15	3-4	10-20

Different versions of the SYLA injection linac and main results of the beam dynamics simulations

Photogun main parameters

Parameter	Value
RF wave length, cm	10.0
Field oscillation mode	π
Accelerating cavity number	4 (3.6)
Length, cm	45
On-axis amplitude of the accel. field, kV/cm	600
Electron energy, MeV	10
Shunt impedance, MΩ/m	35
Q-factor	16000
Transmition, %	> 93
Longitudinal particle losses, %	< 7

Posters PS10&PS15: I. Ashanin et al., "Development and First Measurement Results of a 3.5-Cells S-band RF Gun with a Photocathode for the SYLA Synchrotron Complex" & M. Vladimirov et al., "Features of Electron Bunch Formation in Radiofrequency Photoinjectors"

Regular lattice cell consists from

- •

Retuned optics for a new RF frequency

Injection cells

Main parameters of the scaled SYLA st	torage ring
---------------------------------------	-------------

Parameter	Value
Circumference, m	1110.1
Number of superperiods	40
Number of photon output channels	34 + 40
Equilibrium horizontal emittance, pm rad	71.9
Relative energy spread	8.51 × 10 ⁻⁴
Momentum compactification factor	5.72 × 10 ⁻⁵
Electron bunch length at zero current, mm	2.2
Relative betatron tunes (horizontal, vertical)	95.21, 33.34
Chromaticity values (horizontal, vertical)	8, 6
Energy loss by the electron bunch per turn, MeV/turn	1.99
Total amplitude RF voltage of cavities, MV	8
Harmonic number	1296
Maximum accumulated current, mA	200

RMS error (2.5 σ)	Δx, um	∆y, um	Δφ, urad	10⁴·Δ <i>K</i> / <i>K</i>
Bend	50	50	90	10
DQ	50	50	90	5
Quads	50	50	90	5
Sextupoles	50	50	90	35
Octupoles	50	50	90	40

On-momentum DA in the presence of errors

Off-momentum (no errors)

FMA & tune footprint

Injection simulation

Mode	Filling	Current, mA
7∕8 + 4 mA	4 mA single bunch	200
	Gap from 80 empty separatrix	
	Train of 1134 bunches (0.17 mA/bunch)	
	Gap from 81 empty separatrix	
Uniform	1296 bunches (0,15 mA/bun)	200
16 bunches	16 repetitions:	64
	 → 4 mA single bunche → 80 empty sep. 	
8 bunches	4 repetitions:	40
	 → 5 mA single bunches → 323 empty sep. 	
26∙8 +4 mA	8 mA single bunch	200 [Ib (mA) 16 bunch
	101 empty sep.	
	26 repetitions:	4.0 0.2
	 → 8 bunches (0,94 mA/bun) → 34 empty sep. 	5.0 - 8 bunch

T₀

SYLA beamline list

• High degree of coherence

- Coherent applications CDI -Coherent Diffractive imaging
- > XPCS and SAXS X-ray photon correlation spectroscopy
- High Energy:
 - > Multiscale X-ray imaging

High Brightness

- Surface and interfaces
- Serial crystallography
- > Magnetic scattering
- > Time-resolved experiments
- > Nanodiffraction and nanofocusing

- General beamlines
 - > XAFS and QXAFS
 - **HAXPES Hard-X-ray PES**
 - > Classical PES and ARPES
 - Classical crystallography

• Phase II Beamlines:

- Class II Bioprotected MX and SAXS
- Cultural heritage and paleontology
- High pressure beamline
- Mössbauer spectroscopy beamline

Thank you for attention!

Per aspera ad astra