

First studies of crystal collimation for the FCC-ee

G. Broggi^{1,2,3}, A. Abramov², M. Boscolo³, R. Bruce², D. Mirarchi², S. Redaelli²

¹ Sapienza University of Rome, Italy ³ INFN-LNF, Frascati, Italy

Channeling 2024 – Riccione, Italy, 09/09/2024

Many thanks to:

L. Bandiera, B. Lindstrom, L. Nevay, F. Zimmermann

²CERN, Meyrin, Switzerland

Collimation for the FCC-ee

- FCC-ee is the FCC first stage e⁺e⁻ collider
 - > 90.7 km circumference, tunnel compatible with FCC-hh
 - 4 beam operation modes, optimized for production of different particles:
 Z (45.6 GeV), W (80 GeV), H (120 GeV), ttbar (182.5 GeV)
- FCC-ee presents unique challenges
 - Unprecedented stored beam energy for a lepton collider: up to 17.5 MJ in the Z operation mode (45.6 GeV)
 - Highly destructive beams: collimation system indispensable
 - > The main roles of the collimation system are:
 - Reduce background in the experiments
 - Protect the machine from unavoidable losses
 - > Two types of collimation currently foreseen for the FCC-ee:
 - Beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation around the IPs
 - Tertiary collimators for local protection and particle shower absorbers under study

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (talk)

FCC-ee halo collimation system

- Dedicated halo collimation system in PF
 - Dedicated collimation optics (M. Hofer)
 - > Two-stage betatron and off-momentum collimation system in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Aperture bottleneck at Z: 14.6σ (H plane), 84.2σ (V plane)
 - First collimator design for cleaning performance relies on amorphous collimators
 - Ongoing studies for optimizing the collimator design (G. Broggi <u>IPAC'24 paper</u>)

FCC-ee ZV23, tridodo_572 collimation optics

FCC-ee beam halo collimator parameters and settings (Z mode)

(Exp.

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]	δ _{cut} [%]
TCP.H.B1	Н	MoGr	25	11	6.7	8.9
TCP.V.B1	V	MoGr	25	65	2.4	-
TCS.H1.B1	Н	Мо	30	13	3.8	6.7
TCS.V1.B1	V	Мо	30	75	2.5	-
TCS.H2.B1	Н	Мо	30	13	5.1	90.6
TCS.V2.B1	V	Мо	30	75	3.0	-
TCP.HP.B1	Н	MoGr	25	18.5	4.2	1.3
TCS.HP1.B1	Н	Мо	30	21.5	4.6	2.1
TCS.HP2.B1	Н	Мо	30	21.5	16.8	1.6

Further materials will be studied in the future

M. Hofer

L_{SSS} = 1.4 km

Collimation insertion

(Coll

IPB (Inj./Extr.)

 $= 9.6 \ km$

IPD

(Exp.)

(Exp.)

FCC-ee

4IP

layout

IPG (Exp.)

(RF)

IPH (RF)

 $4.55 = 2.1 \ km$

Crystal collimation for the FCC-ee: motivation

• As an alternative to the baseline design relying on amorphous collimators, crystal collimation is also being explored:

Crystal collimation for the FCC-ee: first considerations

- Particle steering exploiting channeling in bent crystals more challenging for q<0
 - First focus on e- crystal collimation exploiting planar channeling in Si (111) plane
 - Studies extended to e+ crystal collimation
- First checks to identify possible show-stoppers
 - > Beam divergence at crystal candidate location in the FCC-ee vs. critical angle
 - Crystal bending angle needed to deeply impact an absorber downstream
 - Crystal bending radius vs. critical bending radius
- First bent crystal parameters based on optimization of channeling efficiency through channeling simulations:
 - Geant4 (10.4.03) crystal channeling routine through the BDSIM simulation toolkit
 - Crystal data from E. Bagli, <u>G4_MC_CHANNELING Git repository</u>
 - Good agreement with exp. results efficiencies agreement within few % (e.g., U. Wienands et al., <u>Observation of Deflection of a Beam of Multi-GeV</u> <u>Electrons by a Thin Crystal</u>)
- First collimation tracking simulations with selected bent crystal parameters

experiment

Crystal candidate location: FCC-ee Z mode

- Current locations of FCC-ee primary betatron collimators (TCPs) chosen as crystal candidate locations
- At such locations: $\begin{cases} relatively high \beta functions \leftrightarrow large beam sizes \leftrightarrow large collimator half-gaps small Twiss \alpha functions \leftrightarrow small beam divergence \end{cases}$

Material Plane Length [cm] Gap [σ] Gap [mm] δ_{cut} [%] Name TCP.H.B1 Н MoGr 25 11 6.7 8.9 TCP.V.B1 V MoGr 25 65 2.4 - -TCS.H1.B1 Н Mo 30 13 3.8 6.7 TCS.V1.B1 V 2.5 Mo 30 75 TCS.H2.B1 Н Мо 30 13 5.1 90.6 TCS.V2.B1 V 30 75 3.0 Mo TCP.HP.B1 н MoGr 25 18.5 4.2 1.3 TCS.HP1.B1 Н Mo 30 21.5 4.6 2.1 TCS.HP2.B1 н 30 21.5 16.8 1.6 Mo

FCC-ee beam halo collimator parameters and settings

- TCP.H.B1 and TCP.V.B1 might be replaced by bent crystals
- Absorber candidate locations are the same as secondary collimators (TCSs): phase advance is optimal

Divergence at crystal location and critical angle

- U_0 : potential well depth of the planar/axial channel [eV] E: particle energy [eV]
- Angular spread of a beam halo distributions with impact parameter b=10 µm at crystal candidate locations:

FCC-ee *Z* **mode** (*E* = 45.6 GeV)

Si planar channel	<i>U₀</i> [eV]	$ heta_c$ [µrad]
(111)	25.6	33.5
(110)	22.8	31.6
(100)	12.9	23.8

NOTE: At the highest FCC-ee beam energy of 182.5 GeV (*ttbar* mode) the critical angles reduce by about a factor 2 w.r.t FCC-ee Z beam energy

Crystal bending angle, bending radius and length

• First focus on H plane – the study will then be extended to the V plane

tcs.h1.b1

• Different bending angles scanned (50 µrad, 100 µrad, 150 µrad)

crystal

Critical bending radius (Si,
$$E = 45.6 \text{ GeV}$$
)

 $\begin{bmatrix} pv \\ 0 \\ U'(x_{max}) \end{bmatrix} \approx \frac{E}{U'(x_{max})} \approx 9 \text{ cm}$
 $\begin{bmatrix} 0.5 \\ 0.5 \\ 0.33 \\ 0.67 \\ 1.00 \\ 0.50 \\ 0.33 \\ 0.67 \\ 1.3 \\ 0.67 \\ 0.30 \\ 0.00 \\$

G. Broggi | First studies of crystal collimation for the FCC-ee

Channeling efficiency

Particles are considered channeled if:

 θ_c : critical angle

-50

Deflection of 100 µrad of 45.6 GeV e+ using the Si (111) planar potential of a 200 µm long Si crystal.

NOTE: safety margin w.r.t mechanical aperture for 150 urad angular kick is tight.

400

500

Bending angle [µrad]

Bending angle [µrad]

50

100

150

50

100

150

50

100

200

300

Crystal Length [µm]

100

150

50

 $\Delta xp [\mu rad]$

Ω

Collimation tracking simulations

- Simulation workflow:
 - Stand-alone BDSIM simulation for FCC-ee (Z) beam halo interacting with bent crystal
 - Channelled halo distributions used as input for Xsuite-BDSIM
 - 5x10⁶ macroparticles (45.6 GeV) tracked through the FCC-ee lattice - including:
 - o Nonlinearities
 - Synchrotron Radiation (mean model)
 - RF cavities
 - magnet tapering
 - detailed aperture model
 - halo and SR collimators

For 1 machine turn.

Results compared with standard (amorphous) collimation system
 one-turn cleaning

One-turn cleaning of the e- beam

• Replacement of primary collimators with 100 µm bent Si crystals (100 µrad bending angle)

- One-turn cleaning is comparable
- In the crystal collimation case: -

Most beam halo losses end up on the absorbers – as expected Significant reduction (up to a factor >100) of local losses in PF Increase of losses on a vertical SR collimator upstream IPD – to be investigated

- One-turn cleaning is comparable compare again the performance considering smaller impact parameters *b*
- In the crystal collimation case:

Most beam halo losses end up on the absorbers – as expected Significant reduction (up to a factor >100) of local losses in PF Increase of losses on a vertical SR collimator upstream IPD – to be investigated

Summary

- Crystal collimation might be an interesting solution for FCC-ee collimation
 - Feasibility studies have started: no show-stoppers identified
 - First crystal parameter optimization studies performed
 - Planar channeling of e- and e+ in Si (111)
 - ➤ 100/200 µm Si crystals with 100 µrad bending angle
- First collimation tracking simulations with crystals performed: performance gain over standard collimation cannot be demonstrated yet – further studies are needed (e.g., considering smaller impact parameters)

Next steps

- Extend the analysis using more complete channeling routines including
- radiation emissionstrong field effects

- Extend the analysis for studying crystal collimation in the V plane
- Possibly extend the current analysis to:
 - Axial channeling potentially more promising for the e- beam
 - (Multiple) volume reflection
- Optimize absorber parameters (materials, length, retraction, etc.)
- Extend the capabilities of the Xsuite-BDSIM simulation tool to allow for multi-turn collimation tracking with crystals

09/09/2024

Oscillation period

• Si crystal

λ =

$$\pi d_p \sqrt{\frac{pv}{2U_{max}}} \approx \pi d_p \sqrt{\frac{E}{2U_{max}}}$$

dp: interplanar distance [Ang] Umax: maximum potential well depth [eV] E: particle energy [eV]

Z mode (E=45.6 GeV)

Planar channel	dp [A]	Umax [eV]	λ [um]
(111)	2.35 (0.78)	25.6	22.0
(110)	1.92	22.8	19.1
(100)	1.36	12.9	18.0

ttbar mode (E=182.5 GeV)

Planar channel	dp [A]	Umax [eV]	λ [um]
(111)	2.35 (0.78)	25.6	44.1
(110)	1.92	22.8	38.2
(100)	1.36	12.9	36.0

Electron beam distribution impacting absorbers

