The 10th International Conference

Charged & Neutral Particles Channeling

Phenomena

FEL performance and tolerance studies of the EuPRAXIA@SPARC_LAB beamline AQUA

F. Nguyen on behalf of the EuPRAXIA@SPARC_LAB Collaboration

With relevant inputs from L.Giannessi, M.Opromolla, A.Petralia

The 10th International Channeling Conference – **Riccione** – September 9th 2024

EuPRAXIA@SPARC_LAB: AQUA

1st international design of a plasma accelerator facility

EuPRAXIA is designed to deliver at 10-100 Hz ultrashort pulses of

- Electrons (0.1-5 GeV, 30 pC)
- Positrons (0.5-10 MeV, 10⁶)
- Positrons (GeV source)
- Lasers (100 J, 50 fs, 10-100 Hz)
- Betatron X rays (5-18 keV, 10¹⁰)
- FEL light (0.2-36 nm, 10⁹-10¹³)

Realistic intermediate goals at established labs:

- 150 MeV → 1 GeV → 5 GeV (FEL + other applications)
- 1 plasma stage → 2 plasma stages → multiple
- factor 3 facility size reduction \rightarrow factor 10 \rightarrow ...
- Low charge, 10 Hz apps of e- (+ positron generation)
 - \rightarrow high charge, 10 Hz applications (FEL) \rightarrow 100 Hz

The AQUA (water in *Latin*) beamline of the EuPRAXIA@SPARC_LAB project is a FEL facility to be operated in Self-Amplified Stimulated Emission SASE for experiments around 3-4 nm wavelength, i.e. 410-310 eV photon energy, where water looks transparent differently from O or C which are absorbing and scattering \rightarrow water window relevant to study biological samples with coherent imaging

FEL beamlines for EuPRAXIA@SPARC_LAB

Two foreseen FEL beamlines:

Undulator technologies: magnetic strength order

Traditional and cheapest design

Selectable Polarization

In vacuum PMU

Cryogenic PMU Permanent Magnets Vacuum Chamber Permanent Magnets

Superconducting

Highest B and SC electromagn. coils

Best performance

Magnets inside vacuum but not cheap & no polarization Good performance

Improved B but not cost-effective and increased complexity Better performance

AQUA constraints on the FEL beamline

- Target wavelength 3-4 nm @ 1 GeV: relatively short period required (12-20 mm)
- Total available length ~ 25-30 m, depending on the linac: matching section, beam diagnostics and main beam dump.
- Hypotheses:
 - Optimize magnetic length/available length filling factor
 - Make sure gain length shorter than 1 undulator module length
 - 60-80 cm intra-undulator sections: Quads, BPMs, correctors, phase shifters, alignment diagnostics

Tuning range: choice of the period λ_u

FEL performance evaluated with Ming Xie-Dattoli scaling formulae accounting for 60% filling factor

- Linac parameters to be finalized: peak current implies ~ large compression factor → en. spread
- Beta function constrains undulator module length and alignment tolerances

Parameter	Symbol	Units	D (CDR)
Charge	Q	рС	30
Energy	E	GeV	1
Peak current	I _{peak}	kA	1.8
Bunch length	σ _z	μm	2
Proj. norm. emittances (x/y)	ɛ _{n,x,y}	mm-mrad	1.7
Slice, norm. emittances (x/y)	<pre> <i>ɛ</i>_{n,x,y} </pre>	mm-mrad	0.8
Proj. energy spread	$\sigma_{\delta ext{p}}$	%	0.95
Slice Energy spread	$\sigma_{\delta ext{s}}$	%	0.05

From the K vs. gap formulae of a planar PMU with remanent $B_r = 1.2T$, min. magnetic gap=6mm, beam stay clear=5mm:

- 1) 18mm implies tuning range, plus saturation length contingency if operating at 4nm wavelength;
- 2) 16mm improves the saturation length limit, but almost no tuning range

Variable polarization undulator for AQUA

 B_x

 B_y

 $\iint B_x$

Polarization: variable polarization is an asset as it meets the scientific case requests \rightarrow undulator capability, circ. polar. guarantees high gain (~ L_{mod})

Advanced Planar Polarized Light Emitter-type: APPLE-X substantially higher field at the same undulator aperture \rightarrow extended tuning range, K_{max} independent of polarization \rightarrow fully symmetric

Parametrization laws from:

D5.1: Technologies for the CompactLight Undulator, *F.Nguyen et al.,* XLS Deliverable (2019) DOI 10.5281/zenodo.5024409

Model parameters:

- Remanent field Br = 1.35 T
- Undulator period $\lambda_u = 18 \text{ mm}$
- 4 blocks / period, NdFeB
- # of periods (eff.) N = 110 (L_u =1990mm) Field Integrals

from RADIA

APPLE-X undulator modeling

Pipe ext. diam. (mm)	5.6
Piper inner diam. d (mm)	5.0
Wedge cut (mm)	2.8
φ aperture (mm)	6.0
B max (T) (in LP)	0.935
K _{max} (in LP)	1.572
K _{max} (in CP)	1.111
max λ_0 (nm) (@ 1 GeV)	5.25

A. Petralia et al., FEL2022 WEP38 Proceedings

Interplay among aperture, magnetic strength, wavelength tunability and inner diameter constrained by wakefield effects on FEL performance

Vacuum chamber inner radius: wakefields

- Vacuum pipe design: circular and uniform thickness < 300 μm;
- Wakefield effects minimization requires smooth and regular surfaces → suppress apertures or other discontinuities: vacuum pumping access ports only available at undulator transitions → no coating (*e.g.* for vacuum sustain) worsening resistive wall wakefields is needed;
- Which diameter *d* value for the vacuum chamber?

Resistive wall (RW) wakefields: assuming cylindrical symmetry, the **longitudinal** (monopole) wakefield generates an energy loss and an increase in energy spread independent of the beam orbit, while the **transverse** (dipole) wakefield generates an emittance growth that depends on the trajectory

14th International Particle Accelerator Conference, Venice, Italy JACow Publishing ISBN: 978-3-95450-231-8 ISSN: 2673-5490 doi: 10.18429/JACow-IPAC2023-WEPL180

ADVANCED STUDIES FOR THE DYNAMICS OF HIGH BRIGHTNESS ELECTRON BEAMS WITH THE CODE MILES *

F. Bosco^{†1,2}, M. Carillo^{1,2}, E. Chiadroni³, D. Francescone², L. Giuliano²,
L. Palumbo², G. J. Silvi², M. Migliorati², Sapienza University of Rome, Rome, Italy
M. Behtouei, L. Faillace, A. Giribono, B. Spataro, C. Vaccarezza,
Frascati National Laboratories INFN-LNF, Frascati, Italy
O. Camacho, J. Rosenzweig,
University of California Los Angeles, Los Angeles, CA, USA
L. Ficcadenti, INFN-Sez. Roma 1, Rome, Italy
L. Giannessi³, Elettra-Sincrotrone Trieste, Basovizza, Italy
F. Nguyen, ENEA Frascati Research Center, Frascati, Italy

Wakefield deterioration effects on the FEL performance are analyzed as a function of the radius r → energy loss due to the longitudinal RW wakefield provided from M. Migliorati, F. Bosco *et al.* (Uni La Sapienza) → plugged into 3D time dependent Genesis1.3 simulations for AQUA electron both short and long bunches

Longitudinal wakefields – 30pC charge, $2\mu m$ length

<u>Conclusion</u>: negligible difference in the output power between no RW wakefield and longitudinal degradation at both inner radii, even at I_{peak} = 1.8 kA Average energy loss along FEL propagation coordinate: more severe at shorter Cu chamber radius \rightarrow higher wakefield At undulator exit: wakefield energy loss adds up to the FEL interaction loss, but the net peak power is marginally affected

Longitudinal wakefields – 300pC charge, 20 μ m length

<u>Conclusion</u>: negligible difference in the energy loss and so on the power growth between no RW wakefield and longitudinal degradation at both inner radii

→ vacuum chamber with inner radius=2.5mm is safe against RW longitudinal wakefields

Energy loss at undulator exit is dominated by the FEL interaction \rightarrow almost negligible RW wakefield effects.

This behavior is confirmed looking at the average FEL output power along propagation coordinate (inset is the same in linear scale)

Transverse RW wakefields analysis

Transverse RW wakefields induced inside the cylindrical Cu vacuum chamber of radius a = 2...3mmaffect the bunch orbit in undulators, depending on the transverse offset at entrance \rightarrow analytical treatment (complex conductivity+bunch length considerations) based on K. Bane & G. Stupakov and the relationship between transverse and longitudinal impedances \rightarrow estimate the kick κ_{T} angle/unit path length parameter, dependent on radius a and that scales linearly with the transverse offset

Transverse wakefields – 300pC charge, 20 μ m length

Channeling 2024 – Federico Nguyen – September 9th 2024

Transverse wakefields – 300pC charge, 20 μ m length

Channeling 2024 – Federico Nguyen – September 9th 2024

FEL parameter acceptance – Linear polarization

- Modified Ming Xie-Dattoli model to analyze the FEL performance in linear polarization
- Working point: photon energy of 4 nm = 310 eV at 1 GeV
- Gaussian beam in current, energy, energy spread, transverse momenta and spatial distributions
- Peak current 1.5 kA, FWHM bunch duration 5 fs, average $\beta_x = \beta_y = 10$ m, and $\varepsilon_x = \varepsilon_y$.

FEL parameter acceptance – Circular polarization

- Modified Ming Xie-Dattoli model to analyze the FEL performance in circular polarization
- Working point: photon energy of 4 nm = 310 eV at 1 GeV
- Gaussian beam in current, energy, energy spread, transverse momenta and spatial distributions
- Peak current 1.5 kA, FWHM bunch duration 5 fs, average $\beta_x = \beta_y = 10$ m, and $\varepsilon_x = \varepsilon_y$.

Higher N_y/pulse \gtrsim 2 x 10¹¹

FEL performance vs. E_{beam} – Linear polarization

$$\lambda_{\rm res} = \frac{\lambda_{\rm u}}{2\gamma^2} \left[1 + \frac{{\rm K}^2({\rm g}_{\rm u})}{2} \right]$$

Tunability in beam energy γm_ec² and in undulator gap g_u weighted in terms of peak power and saturation length

Linear Polarization: undulator gap gives limited lever arm shorter λ_{res} → lower K values → lower power and longer saturation

By increasing beam energy (other parameters constant) \rightarrow

chance to make 4nm with performance similar to longer wavelengths

FEL performance vs. E_{beam} – Circular polarization

$$\lambda_{
m res} = rac{\lambda_{
m u}}{2\gamma^2} \left[1 + {
m K}^2({
m g}_{
m u})
ight]$$

Tunability in beam energy γm_ec² and in undulator gap g_u weighted in terms of peak power and saturation length

Circular Polarization: wider undulator gap tunability than Linear → "water window" wavelengths probed with higher photon power yields and shorter saturation lengths

> By increasing beam energy (other parameters constant) →

saturation length below ~ 20 m most of the available spectrum; chance to reach for 3nm

Trajectory matching for both polarizations vs. E_{beam}

Channeling 2024 – Federico Nguyen – September 9th 2024

FEL tolerance on injection transverse offsets

Quad. offsets can be corrected by steering the trajectory, angle and position inj. jitters can't be compensated

FEL tolerance on injection tilt angles

Cross-correlation between tilt angle and transverse offset results in more severe constraints: to stay in the > 60% of the ideal FEL power \rightarrow tilt angle < ±6 µrad and offset position < $\pm 25 \ \mu m$

Electron beam misalignments due to tilted injections detune the resonant wavelength and increase sat. length: 10 und. modules demand tilt angle < 25 μ rad \rightarrow ~ 0.06% wavelength detuning! Even if accepted, such an angle affects FEL power at undulator exit!

Channeling 2024 – Federico Nguyen – September 9th 2024

Conclusions

- The undulator adopted for the AQUA beamline consists of an out-of-vacuum APPLE-X: a well-known technology that allows selectable polarization and fine tuning in the water window
- ✓ Extensive studies on RW wakefield effects both longitudinal in energy loss and transverse in the e-beam trajectory – show that chamber r=2.5mm is safe
- ✓ Ideal reference electron beam values allow to enter the realm of O(10¹¹) N_γ/pulse for both polarizations at 4nm → shorter λ to be covered with either improved e-beam quality or higher E_{beam} → same beamline is able to sustain even E > 1 GeV energies
- ✓ FEL tolerance 3D simulations on e-beam injection misalignments result in parameter values acceptance for both transverse offset positions and tilt angles analyzed in terms of λ detuning, saturation length and power
- ✓ Full time-dependent results with S2E particle distributions under realistic conditions are on-going towards the TDR delivery

Please, stay FEL-tuned! Thank you 4 your attention

