

Analysis of corundum crystals optical and ultraviolet transmittance after electron beam exposure

Dr. Yury Cherepennikov

Channeling-2024

$$\cos\theta_{ChR} = \frac{1}{n\beta}$$
,

where θ_{ChR} is the angle of the ChR emission in the medium through which a charged particle passes with velocity $\nu = \beta c$ (c is the speed of light), n is the refraction index of the medium.

$$\beta_{thr} = \frac{1}{n(\lambda)} < \beta < \beta_{max} = \frac{1}{n^2(\lambda) - 1}$$

For $\beta < \beta_{max}$ ChR is ejected into vacuum $\theta_{vac} = \theta$.

To ejected ChR of a charge into vacuum we have to tilt the plate.

$$\sin\theta = n\sin(\theta_{ChR} - \psi)$$

$$\theta_{vac} = \theta + \psi$$

Using radiator made of a material with a high refractive index $n(\lambda)$, for expamle diamond, the ChR will be generated by a charge at speed $\beta > \frac{1}{n(\lambda)}$ i,e. moderately relativistic.

TPU microtron

Electron beam parameters:

- 1 The energy of the extracted beam is from 1.5 to 5.7 MeV. With a discrete step of 0.63 MeV, 9 orbits with smooth adjustment between steps but the reconfiguration between the steps-orbits is a rather lengthy process.
- 2 Energy spread dE/E < 0.3%.
- 3 Frequency 1...50 Hz.
- 4 The pulse duration is $0.5...4 \ \mu$ s.
- 5 The current of the extracted pulsed beam without collimation is up to 40 mA. 5

Experimental scheme and information on used equipment

PMT parameters:

- the size of the active area is $3 \times 3 \text{ mm}^2$;

- spectral range from 250 nm to 900 nm, peak wavelength 420 nm;
 - photon detection efficiency > 50% at 420 nm;
 - microcell recovery time from 16 ns;
- gain (10^6) .

15/1

Waveforms of radiation pulses

Typical waveforms of radiation pulses measured by oscilloscope for $\psi = 40^{\circ}$. (A) - radiation produced in sapphire crystal, (B) - radiation produce in diamond, red curve - measurements without filters, green curve - measurements with filters shifted by 1.5 μ s, black curve - luminescence contribution.

Measurements of orientation dependence for $\theta_{vac} = 90^{\circ}$

Orientation dependence of ChR: (A) - diamond, (B) - sapphire crystal, red curve - vertical polarization, green curve - horizontal polarization.

Experimental scheme and information on used equipment

Orientation dependence of Cherenkov light with subtraction of the luminescence contribution: (A) - diamond, (B) - sapphire crystal, dots - measurements, dashed curve - theoretical calculations.

TABLE I. LINAC 200 parameters.

Electron energy	$26 \div 200 \text{ MeV}$
Macro-pulse duration	$30 \div 300 \text{ ns}$
Bunch duration	$\sigma_z = 0.3 \text{ mm}$
Beam current	$0 \div 60 \text{ mA}$
RF frequency	2865 MHz

10

Electron beam 5.7 MeV, 230 nA

 $3.12 \cdot 10^{15}$ e registered by the cup

Electron beam 5.7 MeV, 230 nA

 $\sigma x = \sigma y \approx 4 \text{ mm}$

Analysis of the brightening of a corundum target in the UV range

Analysis of the brightening of a corundum target in the UV range

Smakula's equation

$$N = 0.87 \times 10^{17} \times n/((n+2)^2) \times \frac{\gamma}{f} \times \alpha_0$$

n – refractive index,

f – transition oscillator strength, a_0 – absorption coefficients at the maximum of the band with the center hv and half width at half maximum (HWHM) γ .

Decomposition of the induced spectral absorption coefficient 14

Analysis of the brightening of a corundum target in the UV range

Absorption	Refractive index	Type of	ΔN, cm ⁻³	
band center, eV	n	defect		
		(F center)		
5,4	1,87	F ⁺	< 0	
4,8	1,84	F+	-1.13·10 ¹⁵	
4,09	1,81	F ₂	0.51·10 ¹⁵	
3,47	1,80	F_2^+	0,52·10 ¹⁵	
2,75	1,78	F ₂ ²⁺	3,04·10 ¹⁵	

Experiment at JINR (Dubna) microtron. 7 MeV, 6 µA

Future plans

Parameters of ASTRA-M accelerator			
Electron beam energy, keV	250		
Pulse duration, ns	100		
Pulse frequency, Hz	40		
Pulse current density, A/cm ²	9		

Average current ~ 6 μ A (3×3 mm spot)

Analysis of corundum crystals optical and ultraviolet transmittance after electron beam exposure

Thank you for attention!

Dr. Yury Cherepennikov

Channeling-2024