5th Pre-PAC Workshop for AGATA@LNL

Contribution ID: 13 Type: not specified

Search for the γ decay of the narrow near-threshold resonance in $^{11}{\rm B}$

Monday 13 May 2024 17:40 (20 minutes)

Abstract

Understanding the structure of near-threshold narrow resonances in C, O and B isotopes is of great importance for nuclear structure studies (e.g., in connection with the onset of collectivization phenomena in cluster nuclei) as well as nuclear astrophysics. In this context, the γ decay from near-threshold states, with branches of the order of 10^{-3} – 10^{-6} with respect to particle emission, is one of the most powerful probes of their state wave function. Therefore, highly efficient and high-sensitivity γ spectrometers, such as AGATA, are needed. To populate near-threshold resonances in C, O and B isotopes, with cross sections of few mb, fusion reactions induced by intense Li beams on Be, C, Li and B targets can be exploited, followed by the evaporation of a single charged particle, detected in a highly segmented detection system (e.g., a TRACE barrel or GRIT). A remarkable case of study is the decay from a hypothetical narrow resonance in 11 B lying just above the proton-decay threshold, the existence of which has been suggested to explain the observation of unexpectable large proton emission after the β - decay of 11 Be. An explorative experiment performed with GALILEO+TRACE has quoted a γ -ray branch for this sought resonance, with limited statistical confidence, at 1.12×10^{-3} , lying slightly above the theory predictions. AGATA, with a sensitivity gain of more than one order of magnitude, will, therefore, allow more firm conclusions on this peculiar decay branch in 11 B.

This proposal is part of an experimental program on light systems which intends to focus, with similar experimental techniques, on the gamma decay from near-threshold states in additional cases, like neutron-rich $^{17}{\rm O}$ to $^{20}{\rm O}$.

Author: CORBARI, Giacomo (Università degli Studi di Milano and INFN)

Presenter: CORBARI, Giacomo (Università degli Studi di Milano and INFN)

Session Classification: LoI 1