Cosmic Archeology with Primordial GW Backgrounds

Peera Simakachorn

(IFIC, University of Valencia)

peera.simakachorn@ific.uv.es

Fundamental Physics and Gravitational Wave Detectors Workshop, Pollica 2024 16.09.2024

Cosmic Archeology with Primordial GW Backgrounds

Fundamental Physics and Gravitational Wave Detectors Workshop, Pollica 2024 16.09.2024

Landscape of Primordial Gravitational-Wave Background (GWB)

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Landscape of Primordial Gravitational-Wave Background (GWB)

Most cosmological GWB \Leftrightarrow BSM of particle physics

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Landscape of Primordial Gravitational-Wave Background (GWB)

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Cosmic histories beyond the standard (ΛCDM) picture.

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Charting cosmic history with primordial GWB

Non-standard cosmic history affects

- The GW sources
- The dilution from cosmic expansion

$$\rho_{\rm today}^{\rm GW} = \rho_{\rm prod}^{\rm GW} \left(\frac{a_{\rm prod}}{a_{\rm today}}\right)^4$$

"Non-standard" history beyond SM radiation era

For long-lasting sources,

e.g., cosmic strings and inflation.

Several works...

- UV completions for non-standard cosmic histories
- how to probe with GWB from local & global cosmic strings, inflation, etc.

Matter/Stiff

e.g., reheating after inflation ⇒ Suppressed/enhanced

(Using cosmic-string GWB)

Cui, Lewicki, Wells, 1912.02569

Intermediate Kination

e.g., "Rotating Axion"

⇒ "Peak" Signature

Co, Dunsky, Fernandez, et al. 2108.09299 Servant, Gouttenoire, PS 2108.10328, 2111.01150

1711.03104, 1808.08968 $\phi_{\rm ini} \gg f_a$ V(Φ) Servant, Gouttenoire, PS LIII.OIIEO 10^{-8} $\Omega_{\rm GW} h^2$ 1 1 1 1 1 1 1 1 1 1 PS, 2023 -ISA Intermediate kination TA hints 10^{-9} ACDM 10^{-10} Intermediate matter $\mathsf{G}\mu=10^{-11}$ matte 10^{-11} 10^{-9} 10⁶ 10^{-6} 10^{-3} 10^{3}

 $f_{\rm GW}$ [Hz]

Intermediate Matter

e.g., oscillating moduli, dark photons, primordial black holes,

Servant, Gouttenoire, PS 1912.03245 Blasi, Brdar, Schmitz, 2004.02889 Ghoshal, Gouttenoire, Heurtier, PS, 2304.04793

& Extra relativistic DOFs

Cui, Lewicki, Wells, 1808.08968,

Servant, PS, To appear

\Rightarrow (multi)-step signature

Other directions

PTA observations

GWB Interpretation

Many sources including scalar-induced GWB with non-Gaussianity.

Figueroa, Pieroni, Ricciardone, **PS** <u>2307.02399</u>

Constraints on postinflationary axion (from strings/domain-wall GWB)

Servant, **PS** <u>2307.03121</u>

Ultra-high frequency (> kHz) GWB: Servant, PS the case of cosmic strings <u>2312.09281</u>

The signal from metastable local strings can be as high as $\Delta N_{\rm eff}$ bound, allowing the scalar potential reconstruction.

> Signals from global (axionic) strings are suppressed by heavy axions.

We really need UHF experiments that probe below $\Delta N_{\rm eff}$ bound.

A Shameless Advertisement

Templates' Catalogue for cosmic-string GWB

Publicly available soon with Simulation-based reconstruction of cosmic-string GWB

Ongoing work [Figueroa, Dimitriou, PS, Zaldivar]

Faster inference! Larger parameter-space exploration!

Extensive lists of models and non-standard scenarios.

Conventional

Semi-analytic (VOS) Numerical (BOS & LRS)

Non-conventional

Non-standard GW emission (α , q), Extra rela. DOFs., UV cutoffs, Non-ST cosmo Metastable strings, Current-carrying strings

A new era for exploiting primordial GW as unique tools

for charting the early-Universe cosmology and high-energy particle physics.

- Physics beyond the SM induces non-standard cosmological histories (beyond the radiation era)
- Smoking-gun spectral distortions of primordial GW exist, detectable by future GW experiments. (I.e., matter era, extra DOFs \Rightarrow suppression, kination era \Rightarrow enhancement)

Pollica 2024 (16.09.2024) - Peera Simakachorn (IFIC, Valencia U.)

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Cosmic Strings & their GW

Reviews e.g., [LISA Cosmo, 1909.00819] and [Servant, Gouttenoire, PS, 1912.02569]

of loops produced along cosmic history (from production time until today)

Not so large UHF signals due to observations @ low-frequency.

LVK (LIGO-VIRGO-KAGRA) @ ~10 Hz $\Omega_{\rm GW} h^2 \lesssim 10^{-8} \Rightarrow G\mu \lesssim 10^{-7}$

PTA (pulsar-timing arrays) @ ~ nHz $\Omega_{\rm GW} h^2 \lesssim 10^{-10} \Rightarrow G\mu \lesssim 10^{-10}$

These low-frequency constraints do not apply if strings shut down the GW production at later times.

These low-frequency constraints do not apply if strings shut down the GW production at later times.

Pollica 2024 (16.09.2024) - Peera Simakachorn (IFIC, Valencia U.)

GW from cosmic strings

generated from spontaneous symmetry breaking at an energy scale η

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

GW frequency $f_{\rm GW}$

Intermediate early matter-domination era (eMD)

dominates at temp. $T_{\rm dom}$, later decays and reheats the radiation to $T_{\rm dec}$.

Intermediate early matter-domination era (eMD)

dominates at temp. $T_{\rm dom}$, later decays and reheats the radiation to $T_{\rm dec}$.

Recently, $eMD \Rightarrow$ "double-step" with a "knee"

associated with loop populations "produced before" and "decay after" eMD.

I.e., $\rho_{\text{loop}} \propto a^{-3}$ and $\rho_{\text{loop}}/\rho_{\text{tot}}$ does not dilute during eMD, unlike loops decaying before eMD.

Ghoshal, Gouttenoire, Heurtier, PS 2304.04793

of loops produced along cosmic history (from production time until today)

Not so large UHF signals due to observations @ low-frequency.

LVK (LIGO-VIRGO-KAGRA) @ ~10 Hz $\Omega_{\rm GW} h^2 \lesssim 10^{-8} \Rightarrow G\mu \lesssim 10^{-7}$

PTA (pulsar-timing arrays) @ ~ nHz $\Omega_{\rm GW} h^2 \lesssim 10^{-10} \Rightarrow G\mu \lesssim 10^{-10}$

These low-frequency constraints do not apply if strings shut down the GW production at later times.

These low-frequency constraints do not apply if strings shut down the GW production at later times.

String network

decays!

Reconstruction of the scalar potential via GW

Servant, Simakachorn [2312.09281]

How to extract the UV cutoff if GWB is detected.

GW frequency: f_{GW} [Hz]

- Detect directly the cutoff (need some luck)
- Several detectors at different frequencies.
 Detect the flat part and the UV slope, ⇒ UV cutoff at the intersection (more generic)

Axionic (or global) strings

 $\Omega_{
m GW} \propto \eta^4 ~{
m or}~ f_a^4 ~~{
m with} f_a$: Peccei-Quinn symmetry-breaking scale

Strings attache to domain walls and collapse: $T_{\rm dec} \sim 10^9 \ {
m GeV} \sqrt{m_a/{
m GeV}}$

Light axion ($m_a \lesssim 10^{-22} \text{ eV}$)

⇒ ~stable strings
Small UHF signal

• $\Delta N_{\rm eff}$ -Goldstone bound $f_a \lesssim \mathcal{O}(1-3) \times 10^{15} {
m GeV}$

Cui, Chang '21, Hardy, Nicoleuscu, Gorghetto '21

• Pulsar-timing arrays

 $f_a \lesssim 2.8 \times 10^{15} \text{ GeV}$

Servant, Simakachorn [2307.03121]

Axionic (or global) strings

 $\Omega_{
m GW} \propto \eta^4 ~{
m or}~ f_a^4 ~~{
m with} f_a$: Peccei-Quinn symmetry-breaking scale

Strings attache to domain walls and collapse: $T_{\rm dec} \sim 10^9 \ {
m GeV} \sqrt{m_a/{
m GeV}}$

Light axion ($m_a \lesssim 10^{-22} \text{ eV}$) \Rightarrow ~stable strings Small UHF signal

• $\Delta N_{
m eff}$ -Goldstone bound $f_a \lesssim \mathcal{O}(1-3) imes 10^{15} {
m GeV}$

Cui, Chang '21, Hardy, Nicoleuscu, Gorghetto '21

- Pulsar-timing arrays
 - $f_a \lesssim 2.8 \times 10^{15} {
 m GeV}$

Servant, Simakachorn [2307.03121]

Heavy axion ($m_a \gtrsim \text{GeV}$) \Rightarrow IR cutoff in UHF

Small signal, even for large f_a .

GWB is diluted by matter domination from axions produced from string collapse.

Reconstruction of scalar potential with UHF GWB

Servant, Simakachorn [2312.09281]

Pollica 2024 (16.09.2024) - Peera Simakachorn (IFIC, Valencia U.)

Pulsar timing array constraints on postinflationary axion

Servant, Simakachorn [2307.03121]

UHF GWB from local and global (axionic) strings (Best cases) Servant, Simakachorn [2312.09281] 10^{-16} ר. בנותע דוותע דוות בנותע דוותע דו EDGES HOL (HET) asteroio ranging ADMX IAXO 10^{-20} **BAW LIGO** LSD DMR ARCADE SQMS OSCAR LISA characteristic GW strain: h_c 02 IAXO (SPD) 04 uAres 10⁻²⁴ CAST EТ CE ocal strings. $\eta = 5 \times 10^{16} \text{ GeV}, \kappa = 26$ ALPSII $\eta = 4 \times 10^{14} \text{ GeV},$ AXO 10⁻²⁸ g JURA Global (axion) strings 10⁻³²⁺ f= 1018 GeV, 1018 Thermal plasma 10^{-36} $m_{3} = 5 \times 1013$ GeV 108 10⁻⁴⁰ Errind rind rind 10¹⁵ 10^{-5} 10^{19} 10^{-1} 10^{3} 10^{7} GW frequency: *f*_{GW} [Hz]

Low-frequency slope is changed by the modified causality tail during the axion matter domination.

Axion matter domination from axionic string decay

Servant, Simakachorn [2312.09281]

Axion string-wall system decays.

Axion-matter domination

Axions decay into photons

 $T_{\rm dec} \sim 10^9 \ {\rm GeV} \sqrt{m_a/{\rm GeV}}$

$$T_{
m dom}\simeq T_{
m dec}G\mu(T_{
m dec})$$

$$T_{a\gamma} \simeq 4.2 \text{ MeV} \left[\frac{106.75}{g_*(T_{a\gamma})} \right]^{\frac{1}{4}} \left(\frac{m_a}{\text{TeV}} \right)^{\frac{3}{2}} \left[\frac{10^{12} \text{ GeV}}{f_a} \right]$$

$$g_{a\gamma}=1.92lpha_{
m em}/(2\pi f_a)$$

Pollica 2024 (16.09.2024) – Peera Simakachorn (IFIC, Valencia U.)

Suppressed UHF GWB from axion strings

Servant, Simakachorn [2312.09281]

$$\Omega_{\rm GW}(f_{\rm GW}) = \Omega_{\rm GW}^{\rm RD}[f_{\rm GW}^{\rm RD}(f_{\rm GW})] \frac{\mathcal{G}(T_{\rm end})}{\mathcal{G}(T_{\rm dom})} \mathcal{B}.$$

$$f_{\rm GW} = f_{\rm GW}^{\rm RD} \left[\frac{\mathcal{G}(T_{\rm end})}{\mathcal{G}(T_{\rm dom})} \right]^{\frac{1}{4}} \mathcal{B}^{\frac{1}{4}}.$$

Local metastable strings can explain PTA data super well?

The best-fit region is excluded by LVK bound,

and on top of that the strings with $G\mu > 10^{-5}\,$ are in tension with $\Delta N_{\rm eff}$ -GW bound

The Bayes factor for explaining the PTA data should be smaller than NG15 analysis.

