How a black hole rings? Nonlinearities and Instability of black hole quasi-normal modes

Davide Perrone, Pollica Physics Workshop, 10/09/2024.

Ringdown, sum of quasi-normal modes Quasi-normal modes are the proper excitation of black holes

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{\mathrm{eff}}(x)\right)\right)\psi_{l,m}(x) = 0$$
+

Angular Equation = 0

 $x = r + r_+ \log(r - r_+)$ Tortoise Coordinate

Ringdown, sum of quasi-normal modes Quasi-normal modes are the proper excitation of black holes

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{\mathrm{eff}}(x)\right)\right)\psi_{l,m}(x) = 0$$
+

Angular Equation = 0

 $x = r + r_+ \log(r - r_+)$ Tortoise Coordinate

Ringdown, sum of quasi-normal modes Quasi-normal modes are the proper excitation of black holes

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{\mathrm{eff}}(x)\right)\right)\psi_{l,m}(x) = 0$$
+

Angular Equation = 0

 $x = r + r_+ \log(r - r_+)$ Tortoise Coordinate

However General Relativity is nonlinear Linear order solution act as source for nonlinear order

K. Mitman et al. (2022), M. Cheung et al. (2022)

 $\langle h_{l_1,m_1} h_{l_2,m_2} h_{l_1+l_2,m_1+m_2} \rangle$ $\langle h_{l_1,m_1}^2 \rangle \langle h_{l_2,m_2}^2 \rangle$

$$\frac{\left|A_{(5,5)}^{(2,2,0)\times(3,3,0)}\right|}{\left|A_{(2,2,0)}\right|\left|A_{(3,3,0)}\right|} = 0.4735 \pm 0.0062$$

J. M. Bardeen et al. (1999), M. Guica et al. (2008)

AdS₃ metric SL(2, \mathbb{R}) $\otimes U(1)$

J. M. Bardeen et al. (1999), M. Guica et al. (2008)

AdS₃ metric $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$ Described with a CFT $\langle T_{m_1} T_{m_2} \rangle, \quad \langle T_{m_1} T_{m_2} T_{m_3} \rangle$

Kerr Black Hole Non-Linearity And its estimate in Extremal limit

$$\frac{\langle h_{(\ell_1,m_1)}h_{(\ell_2,m_2)}h_{(\ell_1+\ell_2,m_1+m_2)}\rangle}{\langle h_{(\ell_1,m_1)}^2\rangle\langle h_{(\ell_2,m_2)}^2\rangle} = \frac{6\sqrt{2}}{2\pi} - 2C_{\ell_1,\ell_2,\ell_1+\ell_2}^{m_1,m_2,m_1+m_2} \frac{G_{3,3}^{3,3} \left(\begin{array}{c} -im_1, & 0, & im_2\\ 1-im_1, & 1, & 1+im_2 \end{array}\right)}{|\Gamma\left(2-i(m_1+m_2)\right)|^2}$$

$$\frac{\langle h_{(2,2)}h_{(2,2)}h_{(4,4)}\rangle}{\langle h_{(2,2)}^2\rangle^2} \simeq 0.62 \cdot \frac{5}{24}\sqrt{\frac{7}{\pi}} \simeq 0.19 \quad \text{vs} \qquad \frac{\left|A_{(4,4)}^{(2,2,0)\times(2,2,0)}\right|}{\left|A_{(2,2,0)}\right|^2} = 0.1637 \pm 0.0018$$
$$\frac{\langle h_{(2,2)}h_{(3,3)}h_{(5,5)}\rangle}{\langle h_{(2,2)}^2\rangle\langle h_{(3,3)}^2\rangle} \simeq 1.57 \cdot \frac{2}{3}\sqrt{\frac{7}{11\pi}} \simeq 0.47 \quad \text{vs} \qquad \frac{\left|A_{(2,2,0)\times(3,3,0)}^{(2,2,0)\times(3,3,0)}\right|}{\left|A_{(2,2,0)}\right|\left|A_{(3,3,0)}\right|} = 0.4735 \pm 0.006$$

A. Kehagias, <u>D.P.</u>, F. Riva, A. Riotto (2023)

A. Ianniccari, A.J. Iovino, A. Kehagias, P. Pani, G. Perna, <u>D.P.</u>, A. Riotto, (2024)

Transfer matrix Formalism

 $\left(\frac{d^2}{dx^2} + \left(\omega^2 - V_{\text{eff}}(x) + \epsilon \,\delta V(x)\right)\right)\psi_{l,m}(x) = 0 \longrightarrow \text{Transfer matrix}$ Formalism V_{eff} $\epsilon\,\delta V$

Analytical prediction on frequency migration Using the transfer matrix formalism

 $\delta \omega_{02} \propto e^{2i\omega_{02}L} R_1(\omega_{02}) \operatorname{Res}(R_0) |_{\omega_{02}}$

Summary and outlook

 Ringdown is crucial for the future of Gravitational Wave analysis

 A lot of techniques are being developed to evaluate it precisely

Some features could be captured by symmetry

K. Mitman et al. (2022), M. Cheung et al. (2022)

2D CFT correlators Exploiting the duality

 $Z_{\text{AdS,eff}}[h] = e^{iS[h]} = \langle e^{\int_{\partial \text{AdS}} T^{\mu\nu} h_{\mu\nu}} \rangle_{\text{CFT}}$ $\langle T(w_1)T(w_2)\rangle, \quad \langle T(w_1)T(w_2)T(w_3)\rangle$ $w_i = \phi_i \to m_i$

A. Kehagias, <u>D.P.</u>, F. RIva, A. Riotto (2023)

Gravitational strain in bulk Stress-Energy tensor on boundary

Known correlators in 2D CFT

Fourier transform of correlators

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Not extended

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Boundary CFT

Half Virasoro Algebra, c = 12J

Not extended

Infinite Gap in extremal limit

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Boundary CFT

Half Virasoro Algebra, c = 12J

Not extended

Infinite Gap in extremal limit

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Half Virasoro Algebra, c = 12J

Left movers excited with $T_L = \frac{1}{2\pi}$

Prescription

temperature

 $\langle T_{m_1} T_{m_2} \rangle$,

- Find the gravitational strain correlators $\langle h_m, h_{-m} \rangle' = -\frac{1}{\text{Re}\langle T_m T_{-m} \rangle'}, \quad \langle h_m \rangle$

A. Kehagias, D.P., F. RIva, A. Riotto (2023)

Calculate correlators of the 2D energy-momentum tensor at finite

$$\langle T_{m_1} T_{m_2} T_{m_3} \rangle$$

$$h_{m_1} h_{m_2} h_{m_3} \rangle' = \frac{2 \operatorname{Re} \langle \mathrm{T}_{m_1} \mathrm{T}_{m_2} \mathrm{T}_{m_3} \rangle'}{\prod_i^3 \left(-2 \operatorname{Re} \langle \mathrm{T}_{m_i} \mathrm{T}_{-m_i} \rangle' \right)}$$

• Integrate the spin-weighted spherical harmonics over the polar angle θ

Near Horizon Extremal Kerr geometry Zooming close to the Horizon

$$ds^{2} = 2M^{2}\Gamma(\theta) \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \Lambda^{2}(\theta)(d\phi + rdt)^{2} \right]$$
$$\Gamma(\theta) = \frac{1 + \cos^{2}\theta}{2}, \quad \Lambda(\theta) = \frac{2\sin\theta}{1 + \cos^{2}\theta}$$

J. M. Bardeen et al. (1999), M. Guica et al. (2008)

NHEK is a warped AdS_3 geometry

Isometry group $SL(2, \mathbb{R}) \otimes U(1)$