Jorinde van de Vis, September 20th 2024

Wall velocity in cosmological phase transitions Pollica workshop on Fundamental physics and gravitational wave detectors

- Expanding bubbles of true vacuum
- Isolated bubbles reach a terminal expansion velocity: v_w
- … or they keep accelerating until they collide

Cosmological phase transitions (see talk by M. Hindmarsh)

Jinno, Konstandin, Rubira 2020

Expanding bubbles of true vacuum

- Isolated bubbles reach a terminal expansion velocity: v_w
- … or they keep accelerating until they collide

Jinno, Konstandin, Rubira 2020

Topic of this talk

Cosmological phase transitions (see talk by M. Hindmarsh)

Dependence on the wall velocity

(some examples)

Wall velocity affects the baryon asymmetry Talk by M. Postma

Figures from: Cline, Laurent 2021

Dark matter production

Slow bubbles: Filtered dark matter Baker, Kopp, Long 2019, Chway, Jung, Shin 2019, Marfatia, Tseng 2020

Figures from: Baker, Kopp, Long 2019

Dark matter production Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022, …

Figure from: Baldes, Gouttenoire, Sala 2022

 $\langle \phi \rangle \simeq v_{\phi}$

Dark matter production Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022, …

• Related mechanism for baryogenesis: Baldes et al. 2021; Azatov, Vanvlasselaer, Yin 2021

 $\langle \phi \rangle \simeq v_{\phi}$

Figure from: Baldes, Gouttenoire, Sala 2022

The wall velocity affects the GW spectrum

(a) Fixed: $\alpha = 0.2$, $r_* = 0.1$, $T_n = 100$ GeV.

Figure from: Gowling, Hindmarsh 2021

• With $R_* \sim (8\pi)^{1/3}/\beta \max(c_s, v_w)$ $K \sim \alpha \kappa/(1 + \alpha)$

$$
\frac{d\Omega_{\text{gw}}}{d\ln(f)} = 0.687 F_{\text{gw},0} K^2 H_* R_* / c_s \tilde{\Omega}_{\text{gw}} C \left(f/f_{p,0} \right)
$$

USA Cosmo-wg 2019, based on Hindmarsh,
Huber, Rummukainen, Weir 2015&2017

The wall velocity affects the GW spectrum

Figure from: Espinosa, Konstandin, No, Servant 2010

Computation of the wall velocity

- Energy release provides outward pressure
- Plasma particles provide friction by reflections and by gaining mass by entering the bubble
- Hydrodynamic backreaction effects
- Wall velocity follows from $|P_{\text{outward}}| = |P_{\text{inward}}|$

Coupled bubble wall-plasma system Assuming weak coupling

Bubble wall Plasma particles

- Scalar field: $\square \phi + V'_T(\phi) + \sum$ *dm*² *dϕ* ∫ d^3p (2*π*)32*E* Out-of-equilibrium particles (top)
- Particles in the plasma (schematically): $\partial_t f + \vec{x} \cdot \partial_{\vec{x}} f + \vec{p} \cdot \partial_{\vec{p}} f = -C[f]$ $\begin{array}{ccccc} \cdot & \circ & \cdot & \cdot & \cdot \\ \cdot & \circ & \circ & \cdot & \cdot \\ \cdot & \circ & \circ & \cdot & \cdot \end{array}$
- Temperature and fluid velocity profile from EM conservation
- Vary wall parameters until all equations are satisfied to determine v_w

Prokopec, Moore 1995 Weakly coupled bubble wall-plasma system

δf(*p*, *x*) = 0

Challenges

$$
\Box \phi + V'_T(\phi) + \sum \frac{dm^2}{d\phi} \int \frac{d^3p}{(2\pi)^3 2E} \delta f
$$

• The phase transition could also be strongly coupled

$f(p, x) = 0$ **Coupled system of equations**

$$
\partial_t f_i + \dot{\vec{x}} \cdot \partial_{\vec{x}} f_i + \dot{\vec{p}} \cdot \partial_{\vec{p}} f_i = -C_i[f_i]
$$
\nMultiple out-of-

\nSolving terms are

equilibrium particles

collision terms are difficult to compute

The phase transition could also be strongly coupled

Coupled system of equations

Many papers

Solutions better than guessing v_w

- Solve the system e.g. Moore, Prokopec 1995, Dorsch, Huber, Konstandin 2021, Laurent, Cline 2022
- Use a (hopefully) reasonable approximation:
	- Local thermal equilibrium Konstandin, No 2011, Barroso Mancha, Prokopec, Swiezewska 2020, Balaji, Spannowski, Tamarit 2020, Ai, Laurent, JvdV 2023, Ai, Nagels, Vanvlasselaer 2024
	- Large jump in degrees of freedom Sanchez-Garitaonandia, JvdV 2023
- Use a numerical package: Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: in progress

Hydrodynamic-based approximations to the wall velocity

• Perfect fluid: $T_{\mu\nu} = w u_{\mu} u_{\nu} - p g_{\mu\nu}$

• Fluid equations follow from $\partial_\mu T^{\mu\nu} = 0$

 $+\delta$ −*δ dz*∂*μTμν* = 0

• Matching conditions follow from ∫

• Perfect fluid: $T_{\mu\nu} = w u_{\mu} u_{\nu} - p g_{\mu\nu}$

• Fluid equations follow from $\partial_\mu T^{\mu\nu} = 0$

 $+\delta$ −*δ dz*∂*μTμν* = 0

• Matching conditions follow from ∫

Figure from: Espinosa, Konstandin, No, Servant 2010

Figure from: Espinosa, Konstandin, No, Servant 2010

- Even in local thermal equilibrium, hydrodynamic effects provide friction (backreaction) on the wall Ignatius, Kajantie, Kurki-Suonio, Laine 1994; Konstandin, No 2011; Barroso Mancha, Prokopec, Swiezewska 2020; Balaji, Spannowski, Tamarit 2020
- Equilibrium-only friction is a reasonable approximation for deflagrations and hybrids in SM+singlet Laurent, Cline 2022

Figure 5. Scatter plot of relative errors of the wall velocity (blue points) and thickness (red points) due to neglecting the out-of-equilibrium pressure contribution, as a function of v_w .

Figure from: Laurent, Cline 2022

Local thermal equilibrium

Model-independent computation of the wall velocity in LTE

- LTE can be understood as additional matching condition: $s_+ \gamma_+ v_+ = s_- \gamma_- v_-,$ the wall velocity can be determined without solving the scalar field equation of motion Ai, Garbrecht, Tamarit 2021
-
- We use the template model to find v_w model-independently Ai, Laurent, JvdV 2023 • Determined by α , c_b , c_s , $\Psi_n \equiv w_b(T_n)/w_s(T_n)$

1 3 *a*−*T^ν ν* = 1 + 1 c_{s}^2 *s*,brok

Template model A generalization of the bag equation of state

• $p_s = -a_+ T^{\mu} - \epsilon$ $p_{s} =$ 1 3 $a_+T^{\mu}-\epsilon$ *p_b* = $\mu = 1 +$ 1 $c_{s, \text{sym}}^2$

Leitao, Megevand, 2015

Model-independent computation of the wall velocity in LTE

- LTE can be understood as additional matching condition: $s_+ \gamma_+ v_+ = s_- \gamma_- v_-,$ the wall velocity can be determined without solving the scalar field equation of motion Ai, Garbrecht, Tamarit 2021
-
- We use the template model to find v_w model-independently Ai, Laurent, JvdV 2023 • Determined by α , c_b , c_s , $\Psi_n \equiv w_b(T_n)/w_s(T_n)$

Model-independent computation of the wall velocity in LTE Ai, Laurent, JvdV 2023

Model-independent computation of the wall velocity in LTE

- LTE can be understood as additional matching condition: $s_+ \gamma_+ v_+ = s_- \gamma_- v_-,$ the wall velocity can be determined without solving the scalar field equation of motion Ai, Garbrecht, Tamarit 2021
-
- We use the template model to find v_w model-independently Ai, Laurent, JvdV 2023 • Determined by α , c_b , c_s , $\Psi_n \equiv w_b(T_n)/w_s(T_n)$
- Provides an *upper bound* on the wall velocity

Discussion of local thermal equilibrium approximation

• How well does the LTE approximation work in other models?

Discussion of local thermal equilibrium approximation

- How well does the LTE approximation work in other models?
- Is the LTE solution reached dynamically? See Krajwski, Lewicki, Zych 2024

*v*_w in phase transitions in strongly coupled sectors

- Can provide stable dark matter candidate, solution to hierarchy problem
- Cosmological strongly coupled phase transitions and GWs?

New strongly coupled sectors (e.g. SU(N))

Fig. Halverson, Long, Haiti, Nelson, Salinas 2020

New strongly coupled sectors (e.g. SU(N))

- Can provide stable dark matter candidate, solution to hierarchy problem
- Cosmological strongly coupled phase transitions and GWs?
- Non-perturbative computation of v_w ?

Fig. Halverson, Long, Haiti, Nelson, Salinas 2020

Large jump in degrees of freedom

 $\propto N^2$ 2

• Strongly coupled PTs typically feature a large enthalpy jump (large jump in dof

Using the large enthalpy jump to predict v_w **Sanchez-Garitaonandia, JvdV, 2023**

- Strongly coupled PTs typically feature a large enthalpy jump (large jump in dof) $\propto N^2$
- We estimate the wall velocity from hydrodynamics in the large-N limit
- We make no further assumptions related to strong coupling (so result would also apply to weakly coupled theories)

Equation of state with a large enthalpy jump

• Low-enthalpy (confined) phase suppressed by $\frac{1}{N^2}$ compared to high-enthalpy 1 *N*²

(de-confined) phase*

$$
p_L(T) \sim \frac{\bar{p}}{N^2}, \quad w_L(T) \sim \frac{\bar{w}}{N^2}, \quad e_L(T) \sim \frac{\bar{e}}{N^2}
$$

 ${}^{\star}\bar{p}, \bar{w}, \bar{e}$ are $\mathscr{O}(1)$ numbers in the appropriate units

Equation of state with a large enthalpy jump

• Low-enthalpy (confined) phase suppressed by $\frac{1}{N^2}$ compared to high-enthalpy 1 *N*²

 $,e_L(T) \sim$ \overline{e} *N*²

(de-confined) phase*

$$
p_L(T) \sim \frac{\bar{p}}{N^2}, \quad w_L(T) \sim \frac{\bar{w}}{N^2}, \quad e
$$

E.g. (bag EoS) $p_H =$ *aH* 3 $T^4 - \epsilon$, $p_L =$

aH 3*N*² *T*4

Large- N limit dictates v_+ , T_+

Solve the fluid profile

- Knowing T_+ , v_+ , v_w and an EOS we can solve the fluid profile: this determines *Tn*
- Unique relation between v_w and T_n

Comparison with simulation result in holographic model

Large-N reproduces simulations really well (even though $N \sim 3$)

- Formula by Janik et al.
- Local thermal equilibrium

$$
\frac{1}{T_n/T_c}
$$

Why was the wall velocity so small in the simulation? See talk by R. Mishra

Fig. Bea, Caselderrey-Solana, Giannakopoulos, Mateos, Sanchez-Garitaonandia, Zilhão 2022

Computing v_w , with out-ofequilibrium contributions* *vw*

*For weakly coupled theories

Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: 2410.xxxx

Publicly availabe code for the computation of the wall velocity

with out-of-equilibrium contributions

- (Mathematica) Ekstedt, Schicho, Tenkanen 2022
- Computes the corresponding matrix elements in $C++$
- Solves the equation of motion for the scalar field(s), fluid equations and Boltzmann equations for out-of-equilibrium particles in Python
- The model and the set of out-of-equilibrium particles are user-defined

• Computes matrix elements for out-of-equilibrium particles, based on DRalgo

 $\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}, p_{\mathcal{P}}, p_{\mathcal{P}})) = \sum_{i} \delta f_i$ *ijk ijk*

• Spectral method of Laurent, Cline 2022 : expansion of $\delta f(z, p_z, p_{\parallel})$ in Chebyshev $T_i(z)T_j(p_z)T_k(p_\parallel)$

- Spectral method of Laurent, Cline 2022 : expansion of $\delta f(z, p_z, p_{\parallel})$ in Chebyshev polynomials: *δf*(*z*, *pz*, *p*∥) $\delta f_a(z, p_z, p_{\parallel}) = \sum \delta f_a$ *ijk ijk* $T_i(z)T_j(p_z)T_k(p_\parallel)$
- Tanh-Ansatz for the scalar field(s): solve for width(s and offsets)
- All tree-level $2 \rightarrow 2$ scattering processes in the matrix elements

Moore, Prokopec 1995; Konstandin, Nardini, Rues 2014

Comparison with earlier computation for SM with light Higgs

Moore, Prokopec 1995; Konstandin, Nardini, Rues 2014

- Spectral method $(N = 11)$ versus three moments
- Some differences in matrix elements
- Mixing in the Boltzmann equations (e.g. eq. for *δf* depends on δf_W) top *W*
- Different treatment of hydrodynamics to MP

Comparison with earlier computation for SM with light Higgs

• A better estimate of v_w (and thus η_B , $\eta_{\rm DM}$, $\Omega_{\rm GW}$, ...) for many models

What can we learn from ?

- A better estimate of v_w (and thus η_B , $\eta_{\rm DM}$, $\Omega_{\rm GW}$, ...) for many models
- What are the largest sources of uncertainty in the computation of v_w ?
	- The effective potential See talk by P. Schicho
	- (Leading log) collisions

 \bullet …

 \sim \sim

• Tanh Ansatz (for future versions)

• When does the linearization in δf break down?

Summary

- The wall velocity is an important parameter in particle and GW production in first order phase transitions, but difficult to compute
- Hydrodynamics-based approximations:
	- Local thermal equilibrium. Code snippet available for model-independent computation
	- Large jump in the number of degrees of freedom. Applicable for a large jump in the degrees of freedom

• W_A (co: publicly available code for the computation of v_w with out-of-equilibrium effects. To be released very soon!

Alternative approach: holography

- Originally: correspondence between type IIB string theory on $AdS_5 \times S^5$ to $N=4$ supersymmetric Yang-Mills theory Maldacena 1998, Gubser, Klebanov, Polyakov 1998, Witten 1998 $AdS_5 \times S^5$
- Different gravity descriptions can be used to correspond to different QFTs

• Weakly coupled gravity theory in d+1 dimensions Strongly coupled QFT in d dimensions

Improved Holographic QCD Gursoy, Kiritsis 2008

- 5D gravity theory $(g_{\mu\nu}, \Phi, a)$ (metric, dilaton, axion) with two solutions: Thermal gass Confined phase AdS Black hole Deconfined phase
- Dual: large-N Yang-Mills
- Reproduces e.g. linear confinement, asymptotic freedom in the UV, ...

- Numerical simulations of a bubble in a holographic model Bea, Caselderrey-Solana, Giannakopoulos, Mateos, Sanchez-Garitaonandia, Zilhão 2022
- Gravity 5D Einstein-scalar model. . Modification of Attems, *N* ∼ 3 Casalderrey-Solana, Mateos, Papadimitriou, Santos-Oliván, Sopuerta, Triana, Zilhão 2016
- We will use these results as a test of our prediction

Wall velocity from holography

Fig. Bea, Caselderrey-Solana, Giannakopoulos, Mateos, Sanchez-Garitaonandia, Zilhão 2022

Hydrodynamic equations and matching conditions

- Hydrodynamic equations $2\frac{\ }{2} = \gamma^2(1-\nu \xi) \left[\frac{\ }{2}-1 \right] \partial_{\xi} \nu,$ *v ξ* $= \gamma^2(1 - \nu \xi)$ \mathbf{I} μ^2 c_s^2 $-1\int \partial_{\xi}v$ Lorentz factor
- Boundary conditions

$$
\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)}, \qquad v_+ v_- =
$$

$$
\frac{\partial_{\nu}w}{\nu} = \left(\frac{1}{c_s^2} + 1\right)\gamma^2\mu
$$

$$
\frac{p_s(T_+) - p_b(T_-)}{e_s(T_+) - e_b(T_-)}
$$

