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• Expanding bubbles of true 
vacuum


• Isolated bubbles reach a terminal 
expansion velocity: 


• … or they keep accelerating until 
they collide 

vw

Cosmological phase transitions (see talk by M. Hindmarsh)
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Topic of this talk

Cosmological phase transitions (see talk by M. Hindmarsh)



Dependence on the wall velocity  
(some examples)



Wall velocity affects the baryon asymmetry
Talk by M. Postma
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Figures from: Cline, Laurent 2021

Baryogenesis by c-t mixingBaryogenesis from CPV lepton dim-6 
Yukawa



Dark matter production
Slow bubbles: Filtered dark matter Baker, Kopp, Long 2019, Chway, Jung, Shin 2019, Marfatia, Tseng 2020

Figures from: Baker, Kopp, Long 2019



Dark matter production
Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022, …

Figure from: Baldes, Gouttenoire, Sala 2022

Heavy, out-of-equilibrium 
dark matter



Dark matter production
Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022, …

• Related mechanism for baryogenesis: Baldes et al. 2021; Azatov, Vanvlasselaer, Yin 2021

Figure from: Baldes, Gouttenoire, Sala 2022

Heavy, out-of-equilibrium 
dark matter



The wall velocity affects the GW spectrum

9
Figure from: Gowling, Hindmarsh 2021



•  

LISA Cosmo-wg 2019, based on Hindmarsh, 
Huber, Rummukainen, Weir 2015&2017


• With  

dΩgw

d ln( f )
= 0.687Fgw,0K2H*R*/csΩ̃gwC (f/fp,0)

R* ∼ (8π)1/3/β max(cs, vw)
K ∼ ακ/(1 + α)

The wall velocity affects the GW spectrum

Figure from: Espinosa, Konstandin, No, Servant 2010



Computation of the wall velocity



Coupled bubble wall-plasma system

• Energy release provides outward pressure


• Plasma particles provide friction by reflections

and by gaining mass by entering the bubble


• Hydrodynamic backreaction effects


• Wall velocity follows from |Poutward | = |Pinward |
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Bubble wall
Plasma particles

Assuming weak coupling



Prokopec, Moore 1995

• Scalar field: 



• Particles in the plasma (schematically):  



• Temperature and fluid velocity profile from EM 
conservation


• Vary wall parameters until all equations  
are satisfied to determine 

□ ϕ + V′￼T(ϕ) + ∑
dm2

dϕ ∫
d3p

(2π)32E
δf(p, x) = 0

∂t f + · ⃗x ⋅ ∂ ⃗x f + · ⃗p ⋅ ∂ ⃗p f = − C[ f ]

vw

Weakly coupled bubble wall-plasma system
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Out-of-equilibrium particles (top)



Challenges

• Scalar field: 



• Particles in the plasma (schematically):  



• The phase transition could also be strongly coupled

□ ϕ + V′￼T(ϕ) + ∑
dm2

dϕ ∫
d3p

(2π)32E
δf(p, x) = 0

∂t fi + · ⃗x ⋅ ∂ ⃗x fi + · ⃗p ⋅ ∂ ⃗p fi = − Ci[ fi]
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Coupled system of equations

Multiple out-of-
equilibrium particles

Matrix elements and 
collision terms are 
difficult to compute



Challenges

• Scalar field: 



• Particles in the plasma (schematically):  



• The phase transition could also be strongly coupled

□ ϕ + V′￼T(ϕ) + ∑
dm2

dϕ ∫
d3p

(2π)32E
δf(p, x) = 0

∂t fi + · ⃗x ⋅ ∂ ⃗x fi + · ⃗p ⋅ ∂ ⃗p fi = − Ci[ fi]
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Coupled system of equations

Multiple out-of-
equilibrium particles

Collision terms are 
difficult to compute

Many papers  

Let’s 

just assume 

assume vw = 1



Solutions better than guessing vw

• Solve the system e.g. Moore, Prokopec 1995, Dorsch, Huber, Konstandin 2021, Laurent, Cline 
2022


• Use a (hopefully) reasonable approximation:


• Local thermal equilibrium Konstandin, No 2011, Barroso Mancha, Prokopec, Swiezewska 2020, 
Balaji, Spannowski, Tamarit 2020, Ai, Laurent, JvdV 2023, Ai, Nagels, Vanvlasselaer 2024


• Large jump in degrees of freedom Sanchez-Garitaonandia, JvdV 2023


• Use a numerical package: Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: in progress
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Hydrodynamic-based 
approximations to the wall 
velocity



Lightning hydrodynamics recap

• Perfect fluid: 


• Fluid equations follow from 


• Matching conditions follow from 

Tμν = wuμuν − pgμν

∂μTμν = 0

∫
+δ

−δ
dz∂μTμν = 0
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Lightning hydrodynamics recap

Figure from: Espinosa, Konstandin, No, Servant 2010



Lightning hydrodynamics recap

T−, v−

T+, v+

Figure from: Espinosa, Konstandin, No, Servant 2010



• Even in local thermal equilibrium, 
hydrodynamic effects provide 
friction (backreaction) on the wall 
Ignatius, Kajantie, Kurki-Suonio, Laine 1994; 
Konstandin, No 2011; Barroso Mancha, Prokopec, 
Swiezewska 2020; Balaji, Spannowski, Tamarit 
2020 

• Equilibrium-only friction is a 
reasonable approximation for 
deflagrations and hybrids in 
SM+singlet 
Laurent, Cline 2022 
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Figure from: Laurent, Cline 2022 

Local thermal equilibrium



Model-independent computation of the wall velocity in LTE

• LTE can be understood as additional matching condition: , 
the wall velocity can be determined without solving the scalar field equation of 
motion Ai, Garbrecht, Tamarit 2021

• We use the template model to find  model-independently Ai, Laurent, JvdV 2023

• Determined by  

s+γ+v+ = s−γ−v−

vw

α, cb, cs, Ψn ≡ wb(Tn)/ws(Tn)
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Template model

•                                          

             

ps =
1
3

a+Tμ − ϵ pb =
1
3

a−Tν

μ = 1 +
1

c2
s,sym

ν = 1 +
1

c2
s,brok

24

Leitao, Megevand, 2015

A generalization of the bag equation of state



Model-independent computation of the wall velocity in LTE

• LTE can be understood as additional matching condition: , 
the wall velocity can be determined without solving the scalar field equation of 
motion Ai, Garbrecht, Tamarit 2021

• We use the template model to find  model-independently Ai, Laurent, JvdV 2023

• Determined by  

s+γ+v+ = s−γ−v−

vw

α, cb, cs, Ψn ≡ wb(Tn)/ws(Tn)
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Model-independent computation of the wall velocity in LTE
Ai, Laurent, JvdV 2023
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Model-independent computation of the wall velocity in LTE

• LTE can be understood as additional matching condition: , 
the wall velocity can be determined without solving the scalar field equation of 
motion Ai, Garbrecht, Tamarit 2021

• We use the template model to find  model-independently Ai, Laurent, JvdV 2023

• Determined by  

• Provides an upper bound on the wall velocity

s+γ+v+ = s−γ−v−

vw

α, cb, cs, Ψn ≡ wb(Tn)/ws(Tn)
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• How well does the LTE approximation work in other models?

28

With out-of-equilibrium
LTE, template model
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Ekstedt, Gould, Hirvonen, Laurent, 
Niemi, Schicho, JvdV: in progress

Standard model with a light Higgs mass

Discussion of local thermal equilibrium approximation



Discussion of local thermal equilibrium approximation

• How well does the LTE approximation work in other models?

• Is the LTE solution reached dynamically? See Krajwski, Lewicki, Zych 2024
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 in phase transitions in strongly 
coupled sectors
vw

30



• Can provide stable dark matter 
candidate, solution to hierarchy 
problem


• Cosmological strongly coupled phase 
transitions and GWs?

New strongly coupled sectors (e.g. SU(N))

31

Fig. Halverson, Long, Haiti, Nelson, Salinas 2020



• Can provide stable dark matter 
candidate, solution to hierarchy 
problem


• Cosmological strongly coupled phase 
transitions and GWs?


• Non-perturbative computation of ?vw

New strongly coupled sectors (e.g. SU(N))
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Fig. Halverson, Long, Haiti, Nelson, Salinas 2020



Large jump in degrees of freedom

• Strongly coupled PTs typically feature a large enthalpy jump (large jump in dof 
)∝ N2

33
Fig. Daniel Baumann 2013 



Using the large enthalpy jump to predict vw
Sanchez-Garitaonandia, JvdV, 2023

• Strongly coupled PTs typically feature a large enthalpy jump (large jump in dof 
)


• We estimate the wall velocity from hydrodynamics in the large-  limit


• We make no further assumptions related to strong coupling (so result would 
also apply to weakly coupled theories)

∝ N2

N

34



Equation of state with a large enthalpy jump

• Low-enthalpy (confined) phase suppressed by  compared to high-enthalpy 
(de-confined) phase*





*  are  numbers in the appropriate units 

1
N2

pL(T) ∼
p̄

N2
, wL(T) ∼

w̄
N2

, eL(T) ∼
ē

N2

p̄, w̄, ē 𝒪(1)
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Equation of state with a large enthalpy jump

• Low-enthalpy (confined) phase suppressed by  compared to high-enthalpy 
(de-confined) phase*





E.g. (bag EoS)   

1
N2

pL(T) ∼
p̄

N2
, wL(T) ∼

w̄
N2

, eL(T) ∼
ē

N2

pH =
aH

3
T4 − ϵ, pL =

aH

3N2
T4
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vw

v+, T+
v−, T−

Large-  limit dictates N v+, T+

• Matching relations: ,         


• Only when , and , matching equations can be fulfilled

v+v− =
p+ − p−

e+ − e−

v+

v−
=

e− + p+

e+ + p−

T+ = Tc v+ = 0

37



Solve the fluid profile

• Knowing  and an EOS we can solve the fluid profile: this determines 



• Unique relation between  and  

T+, v+, vw
Tn

vw Tn
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Comparison with simulation result in holographic model

• Large-  reproduces simulations really well (even though )N N ∼ 3
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simulation of Bea et al. 
2022


- Large-  prediction

- Formula by Janik et al.

- Local thermal equilibrium

N

Not really fast



Why was the wall velocity so small in the simulation?
See talk by R. Mishra

40

Can not supercool below 
this temperature
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Computing  with out-of-
equilibrium contributions* 

vw

*For weakly coupled theories



Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: 2410.xxxx


Publicly availabe code for the computation of the wall velocity 

with out-of-equilibrium contributions 



What does it do?

• Computes matrix elements for out-of-equilibrium particles, based on DRalgo 
(Mathematica) Ekstedt, Schicho, Tenkanen 2022


• Computes the corresponding matrix elements in C++ 

• Solves the equation of motion for the scalar field(s), fluid equations and 
Boltzmann equations for out-of-equilibrium particles in Python 

• The model and the set of out-of-equilibrium particles are user-defined



Some details on the implementation

• Spectral method of Laurent, Cline 2022  : expansion of  in Chebyshev 
polynomials: 

δf(z, pz, p∥)
δfa(z, pz, p∥) = ∑

ijk

δf ijk
a Ti(z)Tj(pz)Tk(p∥)

Preliminary



Some details on the implementation

• Spectral method of Laurent, Cline 2022  : expansion of  in Chebyshev 
polynomials: 


• Tanh-Ansatz for the scalar field(s): solve for width(s and offsets)


• All tree-level  scattering processes in the matrix elements

δf(z, pz, p∥)
δfa(z, pz, p∥) = ∑

ijk

δf ijk
a Ti(z)Tj(pz)Tk(p∥)

2 → 2



Moore, Prokopec 1995; Konstandin, Nardini, Rues 2014

Comparison with earlier 
computation for SM with light Higgs

Preliminary



Moore, Prokopec 1995; Konstandin, Nardini, Rues 2014

• Spectral method ( ) versus 
three moments


• Some differences in matrix 
elements


• Mixing in the Boltzmann 
equations (e.g. eq. for  
depends on  ) 


• Different treatment of 
hydrodynamics to MP

N = 11

δftop
δfW

Comparison with earlier 
computation for SM with light Higgs

Preliminary



What can we learn from             ?

• A better estimate of  (and thus , , , …) for many models 


•

vw ηB ηDM ΩGW



What can we learn from             ?

• A better estimate of  (and thus , , , …) for many models 


• What are the largest sources of uncertainty in the computation of  ?


• The effective potential      See talk by P. Schicho


• (Leading log) collisions


• Tanh Ansatz (for future versions)


• …


• When does the linearization in  break down?


• …

vw ηB ηDM ΩGW

vw

δf



Summary

• The wall velocity is an important parameter in particle and GW production in first 
order phase transitions, but difficult to compute


• Hydrodynamics-based approximations:


• Local thermal equilibrium. Code snippet available for model-independent 
computation


• Large jump in the number of degrees of freedom. Applicable for a large 
jump in the degrees of freedom


•           : publicly available code for the computation of  with out-of-equilibrium 
effects. To be released very soon!

vw



Back-up



Alternative approach: holography

• Weakly coupled gravity theory in d+1 dimensions  


Strongly coupled QFT in d dimensions


• Originally: correspondence between type IIB string theory on  to 
 supersymmetric Yang-Mills theory Maldacena 1998, Gubser, Klebanov, Polyakov 

1998, Witten 1998


• Different gravity descriptions can be used to correspond to different QFTs

AdS5 × S5

N = 4
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Improved Holographic QCD
Gursoy, Kiritsis 2008

• 5D gravity theory ( ) (metric, dilaton, axion) with two solutions:


  Thermal gass              Confined phase


AdS Black hole            Deconfined phase


• Dual: large-  Yang-Mills


• Reproduces e.g. linear confinement,  asymptotic freedom in the UV, …

gμν, Φ, a

N
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• Numerical simulations of a 
bubble in a holographic model 
Bea, Caselderrey-Solana, Giannakopoulos, 
Mateos, Sanchez-Garitaonandia, Zilhão 
2022


• Gravity 5D Einstein-scalar model. 
. Modification of Attems, 

Casalderrey-Solana, Mateos, Papadimitriou, 
Santos-Oliván, Sopuerta, Triana, Zilhão 2016


• We will use these results as a test 
of our prediction

N ∼ 3

Wall velocity from holography
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Not really fast

Fig. Bea, Caselderrey-Solana, Giannakopoulos, Mateos, 
Sanchez-Garitaonandia, Zilhão 2022



Hydrodynamic equations and matching conditions

• Hydrodynamic equations 

,                       


• Boundary conditions 
 
 

2
v
ξ

= γ2(1 − vξ)[ μ2

c2
s

− 1] ∂ξv
∂vw
w

= ( 1
c2

s
+ 1) γ2μ

v+

v−
=

eb(T−) + ps(T+)
es(T+) + pb(T−)

, v+v− =
ps(T+) − pb(T−)
es(T+) − eb(T−)
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Lorentz factor

Velocity boost


