

Gravitational waves from sound waves

Mark Hindmarsh

Helsinki Institute of Physics & Dept of Physics, University of Helsinki

and

Department of Physics & Astronomy, University of Sussex

Fundamental physics and GW detectors 19. syyskuuta 2024

University of Sussex

Gravitational wave spectrum

Quantum fluctuations in early universe & topological defects **Binary Supermassive Black** Holes in galactic nuclei Sources Compact Binaries in our Galaxy & beyond 10⁹ Com Eat objects QCD GeV daptured by Rotating NS, Supermassive Black Supernovae age of wave period years hours ms sec universe log(frequency) -16 -14 -12 -10 -8 -6 -2 0 +2 Cosmic microwave Terrestrial Space **Pulsar Timing** Detectors background Interferometers interferometers polarization

NASA

Electroweak transition: 100 GeV, 10 ps

- Perturbative: weakly first order transition Kirzhnitz, Linde (1972,4)
- But: SM is not weakly coupled at high T Linde (1980)
- Non-perturbative techniques:
 - Dimensional reduction to 3D effective field theory + 3D lattice
 Kajantie, Laine, Rummukainen, Shaposhnikov (1995,6)
 P Schicho talk, Friday
 - SU(2)-Higgs on 4D lattice Czikor, Fodor, Heitger (1998)
- SM transition at $m_h \approx 125$ GeV is a cross-over
 - a supercritical fluid

Temperature

• Search for 1st order transition is a search for physics beyond SM

Laser Interferometer Space Antenna

- Launch mid 2030s
- 4-year mission (up to 10 years)
- 2.5M km arms
- Science objectives:
 - White dwarves
 - Black holes
 - Galaxy mergers
 - Extreme gravity
 - TeV-scale early Universe
- Other missions: Taiji, TianQin
- Proposals: DECIGO, BBO

-ISA sensitivity

First order phase transitions

- Phase: a local minimum of the free energy density *f*
- Behaviour of free energy around 1st order PT:
 - $T > T_2$: one equilibrium phase
 - $T_0 < T < T_1$: two equilibrium phases, one unstable
 - $-T = T_c$: equal free energy, critical temperature
 - $T_0 < T < T_c$: high temperature phase is metastable
 - $T = T_0$: high temperature phase is unstable (spinodal point)
- Metastable phase can persist to T = 0
 - Example: superfluid ³He, A phase
- Keep track of phase with order parameter $\boldsymbol{\varphi}$
- In equilibrium: $\partial_{\phi} f(T,\phi_{ extsf{eq}})=0$
- Equilibrium free energy: $f(T) \equiv f(T, \phi_{eq})$

Little bangs in the Big Bang

- 1st order transition by nucleation of bubbles of low-*T* phase Langer 1969, Coleman 1974, Linde 1983
- Nucleation rate/volume p(t) rapidly increases below T_c
- Expanding bubbles generate pressure waves in hot fluid
- Gravitational wave (GW) production
- GW spectrum has information about phase transition
- Departure from equilibrium: needed for baryogenesis Sakharov (1967)
 Kuzmin, Rubakov, Shaposhnikov (1985)
 M. Postma, Friday

Steinhardt (1982); Hogan (1983,86); Gyulassy et al (1984); Witten (1984)

Fluid kinetic energy

MH, Huber, Rummukainen, Weir (2013,5,7) Cutting, MH, Weir (2018,9)

Gravitational waves ... Mark Hindmarsh

6

David Weir

Phases of a phase transition

- 1. Bubble nucleation and expansion
- 2. Collision
- 3. Acoustic waves (vorticity)
- 4. Non-linear (shocks, turbulence)

 $au_{
m nl} \sim L_f/ar{U}_f$

 $L_{\rm f}$ – fluid flow length scale

 $U_{\rm f}$ – RMS fluid velocity

3 4 'exponential' nucleation rate/volume p(t) $p(t) = p_n e^{\beta(t-t_n)}$ $au_{
m co} = eta^{-1}$

 β – transition rate parameter β > *H* for successful transition

Guth, Weinberg 1983; Enqvist et al 1992; Turner, Weinberg, Widrow 1992;

Review: MH, Lüben, Lumma, Pauly 2021

GWs from first order phase transitions: parameters

- Parameters of transition:
 - $-T_n$ = Temperature at nucleation
 - $-\beta$ = transition rate (= d log p / dt)
 - v_w = Bubble wall speed
 - $\alpha = (\text{potential energy change}^*)/(\text{heat energy})$
 - $-c_{\rm s}$ = sound speed Giese et al 2020
- Useful derived parameters:
 - $r_* = (bubble centre spacing R_*)/Hubble length$
 - K = fluid kinetic energy fraction

Steinhardt '84 Espinosa et al 2010

Fluid kinetic energy makes GWs

* $\frac{1}{4}\Delta(e-3p)$

Energy release via self-similar bubble solutions

GWs from an early universe phase transition

Assume rapid transition, $\beta >> H$, neglect expansion of universe

- Effective theory: Ignatius et al (1994), Kurki-Suonio, Laine (1996)
 - Higgs field

$$\Box \phi - V_T'(\phi) = \eta_T(\phi) U \cdot \partial \phi$$

- $V_T(\phi)$ equation of state
- $\eta_{T}(\phi)$ field-fluid coupling (models friction)
- Relativistic fluid (ideal limit)

 $T^{\mu\nu}_{\rm f} = (e+P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$

 $\partial_{\mu}T_{f}^{\mu\nu} + \partial^{\nu}\phi V_{T}'(\phi) = \eta_{T}(\phi)(U \cdot \partial\phi)\partial^{\nu}\phi$

- Metric perturbation (GW strain) $\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G T_{ij}$

 $ilde{h}_{ij}({f k})=\Lambda_{ij,kl}^{TT}u_{kl}({f k})~$ Garcia-Bellido, Figueroa, Sastre (2008)

GWs from an early universe phase transition

Assume rapid transition, $\beta >> H$, neglect expansion of universe

- Ingredients for theory: Ignatius et al (1994), Kurki-Suonio, Laine (1996)
 - Higgs field $-\ddot{\phi} + \nabla^2 \phi V'_T(\phi) = \eta_T(\phi) W(\dot{\phi} + V^i \partial_i \phi)$
 - $V_T(\phi)$ equation of state
 - $\eta_{T}(\phi)$ field-fluid coupling ("friction", high T: $\eta_{T}(\phi) \propto \phi^{2}/T$)
 - Relativistic fluid

$$\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi) = \eta W^2 (\dot{\phi} + V^i \partial_i \phi)^2$$
$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

- $E = W^*$ (energy density), Z_i = momentum density, V_i = 3-velocity, W = Lorentz factor
- Discretisation * Wilson & Matthews (2003)
- Metric perturbation (GW strain) $\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G T_{ij}$

Also: Brandenburg, Enqvist, Olesen (1996); Giblin, Mertens (2013); Jinno, Konstandin, Rubira (2020)

 $ilde{h}_{ij}({f k})=\Lambda_{ij,kl}^{TT}u_{kl}({f k})~$ Garcia-Bellido, Figueroa, Sastre (2008)

 $\phi_{\rm m}$

 $\phi_{
m b}$

 $|\phi|$

Connection to fundamental theory

- Scalar hydrodynamics $-\ddot{\phi} + \nabla^2 \phi V'_T(\phi) = \eta_T(\phi) W(\dot{\phi} + V^i \partial_i \phi)$
- Scalar effective potential $V_T(\phi)$ =
- Scalar-fluid coupling $\eta_T(\phi)$

Phase transition parameters :

 T_n = nucleation temperature

 g_{eff} = effective d.o.f. in plasma

 $c_s = \text{sound speed}(s)$

 $v_{\rm w}$ = bubble wall speed

 β = transition rate

 $\alpha \sim$ (latent heat)/(thermal energy)

non-equilibrium (v_w) J. van de Vis, Friday

equilibrium, quasi-eqm. ($T_{n'}$, α , β , $c_{s'}$, g_{eff})

P. Schicho, Friday

GW spectrum Ω_p = peak amplitude f_p = peak frequency

 $\sigma_{\rm i}$ = shape parameters

Simulations, Modelling

 $H_n(T_n, g_{eff})$ (Hubble rate)

 $K(v_w, \alpha, c_s)$ (kinetic energy fraction)

 $R_*(\beta, v_w)$ (mean bubble separation)

3D hydrodynamic simulations of phase transitions

Hindmarsh et al 2013, 2015, 2017, 2019; Jinno et al 2023

- Relativistic fluid + scalar order parameter ("Higgs")
- Linearised gravitational wave production
- Discretise on 4200³ lattice (run on 24k CPUs) Wilson & Matthews (2003)
- Key output: GW power spectrum (fractional GW energy density per log wavenumber)

- While sound waves persist, GW power spectrum grows
- Plot: GW power spectrum growth rate (scaled)

Towards a model: relativistic combustion

GWs from phase transitions: Sound shell model

- GWs from Gaussian velocity field Caprini, Durrer, Servant (2007,2009)
- Velocity field: weighted addition of selfsimilar sound "shells" v_q(t_i) from bubbles MH 2016, MH, Hijazi (2019)
- Two length scales:
 - Bubble spacing R_{*}
 - Shell width $R_* |v_w c_s|/c_s$
- Double broken power law
 - $P_{gw} \sim k^9, k^1, k^{-3}$
- Amplitude proportional to:
 - Bubble spacing
 - Shear stress lifetime
 - (Kinetic energy)²
- Similar: bulk flow model (real space) Jinno, Konstandin, Rubira 2020

Estimating GW power

 $\Box h \sim T \longrightarrow P_{\dot{h}}(t,k) \sim \int^{t} dt_{1} \int^{t} dt_{2} \cos[k(t-t_{1})] \cos[k(t-t_{1})] \langle T_{k}(t_{1})T_{k}^{*}(t_{2}) \rangle$

- GW energy fraction: $\longrightarrow |\Omega_{\rm gw} \sim (H_{\rm n}\tau_{\rm v})(H_{\rm n}R_{*})K^{2}$
 - H_n Hubble rate at nucleation
 - τ_v duration of stresses
 - τ_c coherence time
- Coherence time:
 - $\tau_{c} \sim R_{*}$ (bubble spacing)
- Shear stress lifetime (shocks):
 - $\tau_v = H_n^{-1} / (1 + U_f / R_* H_n)$
 - $U_{\rm f}$ (~ RMS velocity) ~ \sqrt{K}
 - or $K = (4/3)U_f^2$

$$\Omega_{\rm gw,0} \simeq F_{\rm gw,0} \frac{r_*}{1 + \sqrt{K}/r_*} K^2 \tilde{\Omega}_{\rm gw}$$

Numerical simulations: $\tilde{O} = O(10^{-2})$

$$\Omega_{\rm gw} = O(10^{-2})$$

Standard cosmology: $F_{
m gw,0}=3.6 imes10^{-5}~
m ($

 $R_*(\beta, v_w, \text{ also } \alpha_n)$ (mean bubble spacing) from bubble growth dynamics

 $K(v_w, \alpha_n)$ (kinetic energy fraction) from self-similar hydro solution

Sound shell model vs. simulations P_{qw}

- Solid: ideal self-similar sound shell
- Dash: evolving sound shell at peak collision time in 1+1D scalar hydro
- Grey: simulations: MH et al 2017
 - simultaneous nucleation of bubbles

Gravitational waves ... Mark Hindmarsh

Nonlinearities 1: Kinetic energy & GW suppression

- **Deflagrations**: heat up fluid in front
- Pressure in front of wall increases, walls slow down
- Formation of hot droplets
- Less transfer into kinetic energy, more into heat.
- Include **GW suppression factor** as a numerical parameter (**right**)
- Also: nucleation suppression
 - bigger bubbles, boosts signal

Al-Ajmi, MH (2023)

GW power spectra in the SSM

• Sound shell model predictions, acceptable accuracy for

- near-linear flows ($\alpha \le 0.3$); fast walls: $v_w > 0.4$; sub-Hubble bubble separations ($r_* << 1$)

Recent advances in hydrodynamics

• Shape of GW spectrum at low k

Sharma, Dahl, Brandenburg, MH 2023; Roper-Pol, Procacci, Caprini 2023

- Effect of sound speed on GW spectrum Giombi, Dahl, MH 2024
 – post-transition equation of state Racco, Poletti 2022
- GWs from strong transitions
 - $v_{rms} \sim 0.1 0.3$, decaying flow (shock dissipation)
 - convergence of GW spectrum, peak shape change

2024

Dahl, MH

Giombi,

 \mathbf{m}

Conclusions

- LISA and other missions will probe physics of electroweak-scale transitions from mid-2030s
 - Measure/constrain phase transition parameters
 - Wall speed likely to be best determined (if signal seen) Gowling, MH (2022)
 - Parameters from underlying particle physics models
 - Recent progress with equilibrium parameters
 - Wall speed the hardest (non-equilibrium)
- Towards accurate calculations of GW power spectrum from parameters
 - Non-linear evolution not well understood yet
 - Strongly supercooled transitions?
 - e.g. "nearly conformal dynamics" Konstandin, Servant (2011)
- Ambition: make GWs as good a probe of the electroweak era as CMB is for the decoupling era

