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The aim of this talk in a nutshell 

Testing the nature of 
compact objects 
through GW 
observations

Significant 
improvements in NR 
simulations of exotic 
compact objects 

• Many proposals of exotic compact objects (ECOs)… One of the 
most studied and sufficiently understood ECOs are boson stars 
(BSs). [See reviews by Liebling & Palenzuela (2012&2023) and 
Bezares &, Sanchis-Gual (2024)] 

• BSs are gravitationally bound spherically symmetric 
configurations of complex scalar field, first found in the 
seminal work by Kaup (1968).  

• BSs are often called black-hole (BH) mimickers but they are 
also great proxies for anything that is not a BH.  

• The questions to be addressed in this talk: 

1. Supposing BS coalescences occur in the Universe, can 
we detect them? 

2. Can we distinguish them from traditional BH and NS 
events?



What are boson stars?

Sennett+ (2019) 

• Boson stars:  

1. are comprised of bosons  (possibly ultralight) 

2. are horizonless (i.e. do not have a singularity) 

3. do not have a surface (the scalar field extends to infinity but falls 
off exponentially) 

4. have a maximum mass 

5. may have large tidal deformability 

6. may have light rings  

7. have a conserved U(1) charge — Noether charge 

• May account for some fraction of dark matter in our Universe; have a 
legitimate formation channel, e.g. via gravitational condensation from 
isotropic initial conditions.  

μ ∈ [10−22,10−3]eV

Eby+ (2015), Levkov+ (2018), Cardoso+ (2022)



Mathematical formulation

•  is what we call a solitonic potential,  is the self-interaction term and  the BS scalar mass. 

• Let us consider spherically symmetric solutions 

• Here  is the amplitude,  is the frequency (const.),  determines rotation in the complex 
plane and  is a constant phase offset. 
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Characteristics of BS solutions

• By fixing the potential, and varying  we may construct a whole family of BS solutions, which 
will vary by the mass, radius, tidal deformability and so on. 

A(0)

φ(t, r) = A(r)ei(ϵωt+δϕ)

Compact BS

‘Fluffy’ BS

A(0)

r99

 — the areal radius 
containing 99% of the 
BS mass 

 — compactness, as 

r99

C
max(m(r)/r)



Numerical relativity and BSs
• Many groups studied binary BS systems, mainly in the context of head-on collisions 

[Palenzuela+ (2006), Bezares+ (2017), Jaramillo+ (2022), Evstafyeva+ (2023)]; a few also 
considered inspiralling binary systems [Bezares+ (2022), Siemonsen+ (2023), Evstafyeva+ 
(2024)].  

• Finite differencing (GRChombo, Lean, MHDueT, Einstein Toolkit) and pseudo-spectral (bamps) 
codes are able to handle BSs.

Head-on

Inspiral

Evstafyeva+ (2023)

Croft+ (2023)

Siemonsen+ (2023)



Inspirals
• Focus on accuracy of equal mass , non-

spinning inspiralling BS binaries.  

• For all runs we calibrate the eccentricity so that 
. 

• We use GRChombo and Lean codes to evolve 
the binary systems. We find good agreement 
between the codes and both yield accuracy 
comparable to binary BH evolutions.   

• Waveforms differ by the remnant: 

Compact BS binary (A17) forms a BH post-
merger.  

 ‘Fluffy’ BS binary (A147) forms a BS post-merger.  

q = 1
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Inspirals
• We also study the effect of the phase off-set 

 and the anti-BS companion  

(i) in-phase ( ) 

(ii) de-phased ( ) 

(iii)  anti-phase ( ) 

(iv) anti-boson ( ) 

• Note the ‘shape’ of the chirp for different 
BS binaries. 
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Compact binary (A17)

blue: in-phase 
pink: anti-phase 
teal: anti-boson

Chirp of the in-phase BS binary (black) is steeper more 
‘violent’; chirp of the anti-phase binary (teal) is shallower.

φ(t, r) = A(r)ei(ϵωt+δϕ)



Waveform bank

Our NR waveforms are publicly available on: 

https://github.com/tamaraevst/Boson-star-
waveforms 

https://github.com/tamaraevst/Boson-star-waveforms
https://github.com/tamaraevst/Boson-star-waveforms


The scenario we would like to consider

Inject NR signal into 
detector noise 
(requires fixing the 
total binary mass, 
luminosity distance, 
sky location)

Use Bilby to perform 
parameter estimation

Assess the quality of the recovery using a 
residual test. Is the residual  
compatible with Gaussian noise?

r = d − h

Assess the 
recovery of 
the injected 
parameters

Ashton+ (2018)



Details of injections

•  We focus on the dominant  modes only.  

•  All of the injections we perform have detectable SNR values, 
e.g.  in Hanford. 

•  We have tested an array of waveform approximants: 
IMRPhenomD, IMRPhenomPv3, IMRPhenomXP, 
IMRPhenomXPHM, TaylorF2, IMRPhenomPv2_NRTidal, 
TEOBResumS. 

•  We fix the right ascension, , declination 
,  inclination angle,  and polarisation 

angle . 

•  In our exploration, we mainly vary the luminosity distance  

and the total mass  of the injected binaries, 

so .

l = 2

ρ ∈ [15,60]

α = 1.375
δ = − 1.2108 ι = π/3

ψ = π/2

dL
Mtot ∈ [5,120]M⊙

μ ∼ 10−13 − 10−12eV

LISA Consortium Waveform Working Group (2023)

Bottom line: We inject our NR BS signals into noise of 2 LIGO detectors (H1, L1) and use Bilby for PE utilising common 
waveform approximants for recovery. 



Compact binary example
• None of the approximants are able to recover the injected parameters within 90% confidence level: often biasing 

 and spins.   

• For a wide range of  and  we obtain a Gaussian residual, e.g. even for injections with 

 

• Among compact A17 runs, anti-BS binary has the ‘most accurate’ PE.

q

dL Mtot ∈ [5,120]M⊙
ρ ∼ 170

purple: anti-BS 
pink: in-phaseInjection: in-phase compact BS binary with  and Mtot = 80M⊙ dL = 500Mpc



Fluffy binary example
•  None of the approximants are able to recover all 
of the injected parameters within 90% confidence 
level. 

•  For larger  Bilby mainly fits the merger + 

ringdown, for smaller  — the inspiral; but never 
both! 

•  For  the residual is Gaussian, whilst for  

 — non-Gaussian.

Mtot
Mtot

ρinj ≲ 30
ρinj ≳ 30

Upper: IMRPhenomXP recovery results in , 

,  and . 

Bottom: IMRPhenomPv2NRTidal recovery yields , 

, , ,  and 

.

m1 ∼ 70M⊙
m2 ∼ 65M⊙ a1 ∼ 0.98 a2 ∼ 0.60

m1 ∼ 3.7M⊙
m2 ∼ 1.3M⊙ a1 ∼ 0.96 a2 ∼ 0.63 Λ1 ∼ 3000
Λ2 ∼ 11000



Interpreting PE results
• Essentially, most of the recovered parameters are 

‘inaccurate’, but the PE results we are seeing are not 
random! 

• Let us consider the recovery of the effective spin for 
binaries of various total masses.  

• The recovered effective spins can be explained in terms 
of the shape of the chirp of injected BS binaries. 

in-phase, compact in-phase, fluffy

antiBS, compact anti-phase, compact
Blue: PE using spins fixed to the injected values 
(zero spins).  

Red: full PE (all parameters are varied). 

x denotes the effective spin ,χeff =
χ1 + qχ2

1 + q
χi = Si ⋅ L



Interpreting PE results
in-phase, compact in-phase, fluffy

antiBS, compact anti-phase, compact

Steep chirp Shallow chirp

- In-phase BS binary  
- BH binaries with anti-
aligned spins. 

- Anti-phase BS binary 
- BH binaries with aligned 

spins (hang-up).

1. In-phase binary: negatively aligned spins
2. Anti-phase binary: positively aligned spins
3. Anti-BS binary: spins close to zero



Summary 
• Supposing BS coalescences occur in the Universe, can we detect them? 

Yes; however, the BS scalar mass, , would determine the frequency of the signal. 

• Can we distinguish them from traditional BH events? 

No, if we simply follow the results of PE for signals with a BH remnant. However, (1) consistency checks 
should be performed to assess whether we can break the degeneracies, and (2) high SNR > 200 injections 
should be considered in more detail. 

Yes, especially in the regime of moderate SNR > 30 for signals forming a BS remnant. 

• We are only at the beginning of modelling BS binaries and potentially having a simple 
phenomenological model. Need more exploration of the BS parameter space and potential smoking-
gun effects. Plenty of room for interesting studies.  

• It is important however to address the ‘big elephant in the room’: degeneracies. Can we break the 
degeneracies between compact BS binaries and BHs? The same applies to modified theories of gravity. 

μ



Thank you!
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Numerical relativity and BSs
• If we want to perform NR simulations, a few 

considerations have to be taken into account: 

1. Initial data: codes either utilise initial data 
superpositions that violate constraints to some 
degree OR solve the constraints using elliptic 
solvers [Siemonsen+ (2023), Atteneder+ (2024)].  

2. Spurious oscillations in the scalar field  (the star 
becomes excited rather remains in equilibrium). 

3. Adaptive mesh refinement and/or poor 
resolution can be culprits of unphysical 
evolution. 

4. Understanding of the accuracy and calibration 
of most of the codes is lacking. 



GW detection & Parameter estimation: 101

LIGO Scientific Collaboration: GW170814

Schmidt (2020)
(Image credit: Nikheff)

Incoming GW signal
LIGO-Virgo-KAGRA detectors

Matched filtering 

Parameter estimation using 
statistical inference. 

GW170814: BBH with 
, m1 ∼ 30M⊙ m2 ∼ 25M⊙

Both methods require the knowledge of the signal model as a 
function of source parameters — a waveform approximant. There 
are many phenomenological models calibrated to NR. The number 
of NR waveforms used in the calibration process increased from 20 
to ~ 400 for BBH systems. 

Khan+ (2019)



BS & BH signals 
For simplicity: consider the energy density for a complex scalar field  in flat space-timeφ

ρ =
1
2 ( |Π |2 + |Φ |2 + m2φ2), Φ = ∂iφ

The energy density associated with the superposition of two stars  can be expressed with 
, where  is the interaction potential, which vanishes when the two stars are well-separated. This 

interaction potential may be written as:

φ = φ1 + φ2
ρ = ρ1 + ρ2 + Δ Δ

Δ =
1
2 [Π̄1Π2 + Π1Π̄2 + Φ̄1Φ2 + Φ1Φ̄2 + m2(φ̄1φ2 + φ1φ̄2)]

Assume  and  so that , where  is strictly a non-
negative function. Then by varying  and , we find:

φ1 = A(0)eiωt φ2 = A(0)ei(ϵωt+δϕ) Δ = Δ0cos[(1 − ϵ)ωt − δϕ] Δ0
δϕ ϵ

ΔBoson = Δ0

ΔAnti−phase = − Δ0

ΔAntiboson = Δ0cos(2ωt)
Palenzuela+ (2006)



Illustration (BH vs BS) 

Amplitude Phase



Convergence plot 



Corner plot (variable spins)
Injection of BS 
binary of .80M⊙



Corner plot (fixed spins)
Injection of BS 
binary of .80M⊙


