Nonlinear dynamics of compact object mergers in beyond
General Relativity

Maxence Corman
September 17, 2024

Max Planck Institute for Gravitational Physics




Motivation

st

3
PO -

6

76,

m

62

i

9

s
e

nmiamo  ompostenns B owonnsos

avergonns

105

4

101

P

C 66




Testing General Relativity with Gravitational Waves
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Testing General Relativity with Gravitational Waves
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Testing General Relativity with Gravitational Waves
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Testing General Relativity with Gravitational Waves

Bottom-up

Modified theory of gravity

Phenomenological deviations
from General Relativity
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Testing General Relativity with Gravitational Waves

Modified theory of gravity
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Testing General Relativity with Gravitational Waves
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Approaches to studying modifications to general relativity

Full

solution: Requires well-posed initial value problem formulation

Same principal part as GR: Scalar-Tensor theories pamour, Esposito-Farese —
Barausse+,Shibata+, Quadratlc GraVIty at Weak C0up|lng Noakes = Held+, East+

Only scalar part modified: Cubic Horndeski Figueras+, Screening theories ezares+

Horndeski theories: Modified Generalized Harmonic formulation kovacs and Reall
s East+Cormant OF modified CCZ4 formulation saio+




Approaches to studying modifications to general relativity

e Solve the equations perturbatively

e Pros: same principal part as GR,
easy to implement and flexible

e Cons: secular effects
e Applications: EdGB and dCS

Okounkova-+ Stein+
G(g) =AS

e \N:G(g%) =0

o M G(gh) =AS(g")




Approaches to studying modifications to general relativity
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Approaches to studying modifications to general relativity

Inspired by Israel-Stewart fixing of

Solve the equations perturbatively

Pros: same principal part as GR,
easy to implement and flexible

Cons: secular effects
Applications: EdGB and dCS

Okounkova+,Stein+

G(g) =AS
M G(g?) =0
A G(gh) = AS(g°)

relativistic hydrodynamics

Fix evolution equations below
some short lengthscale

Add new dynamical fields with
driver equations

Pros: Corrections fully backreact
Cons: Computationally expensive

Applications: EsGB, Higher
derivative theories

Cayuso+,Lehner+,Bezares+,Lara+,Franchini+




Einstein scalar Gauss Bonnet gravity

4
5= 16W/dxﬁ[ ~ (Vo) + 8(0)]]
with G = R2 — 4R,,R? + R,y R

e Horndeski theory = second order equations of motion
e Shift-symmetric = [(¢) = 2\¢

e Black hole solutions with scalar hair ~ \/m? (sotiriou & zhow) = energy loss through

scalar radiation, -1PN (at leading order) dephasing in GW signal (vag)

e Well-posed initial value formulation (kovacs and Reall)
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To what extent can predictions from approximate treatments such as the
order-by-order and fixing approach be confronted with gravitational wave
observations?

MC,Lehner,East and Dideron,2024



Head on collisions of equal-mass scalarized black holes
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All agree reasonably well but differences are small. Amplitude order-by-order solution increases by
40% compared to 3.7% for full solution, while
error in peak time remain small.



Head on collisions of scalarized black holes
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Head on collisions of equal-mass scalarized black holes

— GR A — CR
0.0109 —-= Xx=0.0402 N on —= A=0.15M?
...... ORA f { ! ! -.es ORA
0.005 T=17Tm ‘ i i T=17Tm
I
o 00001 mmre e A VA S 0.00] e P
g b s
= —0.00510.0120 R = 0.0175
b
L —0.01 W
= [ .0l1ol
0.0101( 1118 ¥
i ) =
—0.015 {l 7 0.01251; y \.\
0.0116 (i
E 5
—0.020
—-100 =75 =50 =25 0 25 50 5 —100 —75 —50 25 0 25 50 75
(t - tpeak)/]u (t = tpsak)/]w

All agree reasonably well but differences are small. Amplitude order-by-order solution increases by
40% compared to 3.7% for full solution, while
error in peak time remain small.



Quasi-circular inspirals of scalarized black holes
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Secular effects reflected in amplitude waveform
at merger, W) = (%)2 AV,



Quasi-circular inspirals of scalarized black holes

150 175 200 225
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Secular effects reflected in amplitude waveform

at merger, W) = (%)2 AV,
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Weak dependence of amplitude at merger for full

solution. Order-by-order overshoots full solution.



Secular errors in the order-by-order approach: a toy model

e Anharmonic oscillator



Secular errors in the order-by-order approach: a toy model

e Anharmonic oscillator

d?x 27\ 2 3

GIT.'2+<T> (X+6X)—0
e Initial conditions J

x(t=0)=1, —(t=0)=0



Secular errors in the order-by-order approach: a toy model

e Anharmonic oscillator

d?x 27\ 2 3
e Initial conditions J
Ix
t=0)=1, —(t=0)=0
x( )=1, )

e Full solution: pure sine wave but shifted frequency



Secular errors in the order-by-order approach: a toy model

e Anharmonic oscillator

d?x 27\ 2 3
e Initial conditions J
Ix
t=0)=1, —(t=0)=0
x( )=1, )

Full solution: pure sine wave but shifted frequency

Order by order solution:

x(t) = cos(wot) + 3% [cos(3wot) — cos(wot) — 12wt sin(wot)]

= secular growth on timescales ~ Ty /e



Secular errors in the order-by-order approach: a toy model
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Quasi-circular inspirals of scalarized black holes
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Take aways comparison study

To what extent can predictions from approximate treatments such as the order-by-order
and fixing approach be confronted with gravitational wave observations?

e Order-by-order approach cannot faithfully track the solutions when the corrections

to general relativity are non-negligible.

e Fixing approach can provide consistent solutions, provided the ad-hoc timescale
over which the dynamical fields are driven to their target values is made short

compared to the physical timescales — computationally feasable?



Black hole-neutron star mergers in EsGB gravity

MC and East 2024



Observation of gravitational waves from two neutron star-black hole coalescences

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

(Dated: Jun

. 2021)

ABSTRACT

We report the observation of gravitational waves from two compact binary coalescences in LIGO’s
and Virgo's third observing run with properties consistent with nentron star black hole (NSBH)
binaries. The two events are named GW200105.162426 and GW200115.042309, abbreviated as
GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo, and the second
by all three LIGO- Virgo detectors. The source of GW200105 has component masses 8.9712 M and
1.903 Me,, whereas the source of GW200115 has component masses 5.7 55 M. and 1 § M (all
measurements quoted at the 90% credible level). The probability that the secondary’s mass is below
the maximal mass of a neutron star is 89% 96% and 87% 98%, respectively, for GW200105 and
GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity
distances are 2807110 Mpe and 300%130 Mpe, respectively. The magnitude of the primary spin of
GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For
GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at
887% probability. We ase unable to constrain the spia or tidal deformation of the secondary componeat
for either event. We infer an NSBH merger rate density of 45753 Gpe™®yr~" when assuming that
GW200105 and GW200115 are representative of the NSBH population, or 130+43% Gpe yr ! under
the assumption of a broader distribution of component masses.

Motivation for black hole-neutron star mergers in EsGB gravity

Observation of Gravitational Waves from the Coalescence
of a 2.5-4.5 M: Compact Object and a Neutron Star

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

ABSTRACT

We report the observation of a coalescing compact binary with component m 5-4.5 M,
and 1.2 2.0 M. (all measurements quoted at the 90% credible level). The gravitational-wave sig-
nal GW230529_181500 was observed during the fourth observing run of the LIGO Virgo KAGRA
detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of
the source has a mass less than 5 M at 99% credibility. We cannot definitively determine from
gravitational-wave data alone whether either component of the source is a neutron star or a black
hole. However, given existing estimates of the maximum neutron star mass, we find the most probable
interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass

ses

o

between the most massive neutron stars and the least massive black holes observed in the
estimate a merger rate density of 55*}27 Gpc™® yr~! for compact binary coalescences with properties
similar to the source of GW230529_181500; assuming that the source is a neutron star black hole

0529_181500-like sources constitute about 60% of the total merger rate inferred for neu-

merger, GW:
tron star-black hole coalescences. The discovery of this system implies an increase in the expected rate
of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence
for compact objects existing within the purported lower mass gap.




Motivation for black hole-neutron star mergers in EsGB gravity
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1. Are PN predictions accurate enough to model inspiral?
2. What does the GW signal look like in non-linear regime?

3. Can we comment on the ringdown signal?



Are PN predictions accurate enough to model inspiral?

M
— /agg = 0.00 km ; 0.01 0.018 0.028 0.039 0.048
0.21 --== /agp = 1.19 km .":ﬂ i —— Adyg e Adgpy
bigy "7 Adpy ——  Adypy
0.1 AP_
— —0.25{ )\ 1N
53 ]
g 0.0 i o —0.50 »_‘.‘ \\’/’\_/\/
~ I <1 " ~
= i —075] 3
—0.1 i
! —1.00
—0.2 7
! e
0 ) 10 1% 20 25 30 fm T 800 1100 -
(t - tm)[mS] f[HZ]

PN predictions taken from Sennet+2016 and mapped to Einstein frame using recipe outlined in
Julie+2022 or more recently Julie+2024.



What does the GW signal look like in non-linear regime?
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Can we comment on the ringdown signal?
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Conclusion

1. Are PN predictions accurate enough to model inspiral?
We find reasonable agreement up to the end of inspiral.

2. What does the GW signal look like in non-linear regime? We find weak
dependence of amplitude GW signal on coupling at merger.

3. Can we comment on the ringdown signal? Sign of shift in frequencies consistent
with perturbation theory but main effect is on amplitude GW signal.






Order by order approach in EsGB
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Fixing approach in EsGB
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What does the GW signal look like in non-linear regime?
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Quasi-circular inspirals of scalarized black holes
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