FUN WITH PTA INTERPRETATIONS

Pedro Schwaller Mainz University

Fundamental physics and GW detectors

Pollica September 13, 2024

New era in fundamental (particle) physics

Standard model is valid to high energies

No clear hint where new physics is

New era in fundamental (particle) physics

At the same time:

SM is incomplete, does not explain dark matter, baryon asymmetry, inflation, ...

All linked to very early Universe dynamics

New era in fundamental (particle) physics

At the same time:

SM is incomplete, does not explain dark matter, baryon asymmetry, inflation, ...

All linked to very early Universe dynamics

Gravitational waves are messengers from this era

great opportunity

PTA: First observation of stochastic GW background

Could be of primordial origin, though a large astrophysical contribution (SMBHB) is likely

In any case:

Testing ground for model building, parameter reconstruction, ...

- what can we learn from GW data
- how else can we probe and distinguish models

Outline

Audible axions: GWs from rolling axions & PTA

GWs from domain walls

spectral distortions as complementary probe of GW sources

PTA GWs from supermassive pBH

Not today:

- ▶ Ultra-high frequency GWs
- Supercooled PTs
- Strongly coupled PTs from holography

Peak position depends on critical temperature

Audible axions:

Peaked but chiral

Cosmic strings

► Flatter spectrum

 10^{-15}

 $h^2\Omega_{
m GW}$

 $---- h^2 \Omega_{sw}$

 $h^2\Omega_{\rm turb}$

LISA

Madge, PS, 2018

Audible Axions

Axion/ALP with dark photon

Take an axion ϕ

Dark photon X

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) \right]$$
$$-\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\alpha}{4f} \phi X_{\mu\nu} \widetilde{X}^{\mu\nu} \right]$$

In radiation domination, i.e. after inflation!

Axion/ALP with dark photon

Take an axion ϕ

Dark photon X

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) \right]$$
$$-\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\alpha}{4f} \phi X_{\mu\nu} \widetilde{X}^{\mu\nu} \right]$$

In radiation domination, $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$ is after inflation. $\phi_i = \theta f$, $\phi_i' \approx 0$, $\theta \sim \mathcal{O}(1)$ i.e. after inflation!

$$V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$
 $\phi'_i \approx 0$, $\theta \sim \mathcal{O}(1)$

Initial ϕ_i , starts re

ALP dynamics - with dark photon

$$\phi_i = \theta f, \quad \phi_i' \approx 0, \quad \theta \sim \mathcal{O}(1)$$

Equation of motion

$$\phi'' + 2aH\phi' + a^2V'(\phi)$$

$$-\sqrt{2}\phi - \frac{\alpha}{fa^2}\mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$$

ALP starts rolling when $H \sim m_\phi$

ALP is damped due to exponential production of dark photons

- ► Reduced relic abundance enlarge natural DM parameter space
- Or production of vector DM

Agrawal, Marques-Tavares, Xue, 2018 And others...

How does this work?

Equation of motion (in momentum space)

$$X''_{\pm}(\tau, \mathbf{k}) + \left(k^2 \pm k \frac{\alpha}{f} \phi'(\tau)\right) X_{\pm}(\tau, \mathbf{k}) = 0$$

The rolling ALP induces a tachyonic instability

$$X''_{\pm} + \omega_{\pm}(\tau)X_{\pm} = 0$$
 with $\omega_{\pm} = k^2 \mp k \frac{\alpha}{f} \phi'$

Exponential growth of a range of dark photon modes

$$X(\tau) \propto e^{|\omega|\tau}$$
 for $k \sim \frac{\alpha \phi'}{2f}$

Dark photon spectrum ϕ

Initial condition violates parity (field rolls to the left or to the right)

ω dakk photon helicity dominates

A certain range
$$0 < \text{Remodes} \quad \frac{1}{m} \times \frac$$

$$0 < k < \frac{\alpha \phi'}{f}, \quad \frac{k}{m} \lesssim \alpha \theta$$

$$\kappa = \frac{1}{2f} \gtrsim \frac{1}{2} m$$

GW production

Stress

Energy Density of Dark Photon

Gravity Waves
$$h_{ij}''(\mathbf{k},\tau) + k^2 h_{ij}(\mathbf{k},\tau) = \frac{2}{M_P^2} \Pi_{ij}(\mathbf{k},\tau)$$

Anisotropic stress

$$\hat{\Pi}_{ij}(\mathbf{k},\tau) = \frac{\Lambda_{ij}^{kl}}{a^2} \int \frac{d^3q}{(2\pi)^3} \left[\hat{E}_k(\mathbf{q},\tau) \hat{E}_l(\mathbf{k} - \mathbf{q},\tau) + \hat{B}_k(\mathbf{q},\tau) \hat{B}_l(\mathbf{k} - \mathbf{q},\tau) \right].$$

The exponential growth amplifies quantum fluctuations in the dark photon fields which source a chiral gravitational wave background

Dark photon spectrum

GW spectrum

Machado, Ratzinger, Stefanek, PS, 1811.01950

GW probes of audible ALPs

Machado, Ratzinger, Stefanek, PS, 1912.01107

Ivially selisitive to inglistate ALI s, since

$$f_0 \approx m \left(\frac{T_0}{T_*}\right) (\alpha \theta)^{2/3} = \sqrt{\frac{m}{M_P}} T_0 (\alpha \theta)^{2/3}, \qquad \Omega_{\text{GW}}^0 \approx \Omega_{\gamma}^0 \left(\frac{f}{M_P}\right)^4 \left(\frac{\theta^2}{\alpha}\right)^{\frac{4}{3}}$$

GW probes of audible ALPs

Machado, Ratzinger, Stefanek, PS, 1912.01107

PTA region

Did PTAs hear the audible axion?

2020: Maybe

Wolfram Ratzinger & PS, 2009.11875

 10^{-15}

 10^{-14}

 m_a [eV]

 N_{eff}

Fits including SMBHB (from 2308.08546)

ALP dynamics - once more

$$\phi_i = \theta f, \quad \phi_i' \approx 0, \quad \theta \sim \mathcal{O}(1)$$

Equation of motion

$$\phi'' + 2aH\phi' + a^2V'(\phi)$$

$$-\nabla^2\phi - \frac{\alpha}{fa^2}\mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$$

Once a significant population of dark photons is produced, the back-scattering into ALP fluctuations becomes non-negligible

Requires fully numerical treatment on the lattice

Important to get correct relic abundance prediction

See also Kitajima, Sekiguchi, Takahashi, 2018 Agrawal, Kitajima, Reece et al, 2020

Corrections to GW signal

Qualitative features unchanged, but polarisation is washed out at large couplings

From 2012.11584 with W. Ratzinger, B. Stefanek see also 2010.10990 by (Kitajima, Soda, Urakawa)

Notes

Model variations: Audible Relaxion, Axion kinetic misalignment

(see extra slides)

Also works for:

Scalar dark sectors, e.g.

$$V(\phi, \psi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\psi^2$$

Ramberg, Ratzinger & PS, 2209.14313 see also Cui et al, 2310.13060

single field models (e.g. axion fragmentation)

see e.g. Chatrchyan, Jaeckel, 2004.07844, Fonseca, Morgante, Sato, Servant, 1911.08472, ...

Spectral distortions?

Around $10^4 \lesssim z \lesssim 10^6$, photon number is frozen

Any energy added to the photons leads to a so called μ distortion

Energy source we consider here:
Gravitational damping of dark sector fluctuations

Spectral distortions from dark sector anisotropies

Assume decoupled dark sector, $\Omega_d \ll 1$

Large fluctuations

$$\delta_d = \delta \rho_d / \rho_d \sim 1$$

• Gravitationally induced sound waves in photons $\epsilon_{\rm ac}$

Resulting μ distortions

$$\mu = \int d \log k \, \epsilon_{ac}^{\lim}(k) \mathcal{W}(k),$$

Ramberg, Ratzinger & PS, 2209.14313

Example source: Annihilating domain walls

Already probes allowed parameter space

Complementary to GW probes, can break degeneracy

► For all low scale sources (PTs, strings, AA,...)

Ramberg, Ratzinger & PS, 2209.14313

Axion/ALP domain walls

Madge et al, 2306.14856

Invisibly decaying DWs

Madge et al, 2306.14856

Also: PBH formation (Y. Gouttenoire 2023)

One more: Primordial black holes

Binaries of supermassive PBH

environmental effects

PBH: No clustering

Viable region at very large masses

already pointed out by Atal, Sanglas, Triantafyllou, 2012.14721

However: Fewer than one pBH contributes to signal on average there

- ► Not a stochastic BG
- Not even a signal most of the time

PBH: With clustering

Now an actually viable region emerges

Assuming a suitable production mechanism

- Needs to evade mu distortion bounds
- ▶ Non-gaussian!

Superlarge PBH

Less crazy: Astroindependent bounds
on clustered pBH from
PTAs

Expect anisotropies in GW background:)

Summary

GWs are new window to early, dark Universe

Today:

- Audible axions are cool
- Spectral distortions are cool
- Supermassive pBH are also cool, but maybe a bit crazy;)

Many things to be done (simulations!), much data will come in the future -> Exciting times!

Extra slides:)

Spectral distortions as probes of low scale GWs

Tensor fluctuations (GWs) also source μ distortions

▶ But difficult to test. Better to directly go for the scalar fluctuations (that also source the GWs)

High frequency GW searches

Higher Frequency → shorter wavelength

Experiment may fit in your laboratory

Gravity couples to everything

Any very sensitive device could potentially be a detector

Current interest:

Cavities for axion searches

Berlin et al, 2112.11465

Gertsenshtein effect:GWs convert to photons in strong magnetic field

Sources? Primordial BH, superradiance, or...?

E&M on curved backgrounds is confusing however

E and B fields not uniquely defined everywhere in detector, depend on

chosen coordinate frame

Observables should be independent!

Proposed coordinate independent perturbation scheme

Applied to:

- ▶ Thin rod
- ▶ Sphere

Including mechanical deformations

Compared with commonly used

approximations → can identify range of validity and provide error estimate

$$E_{\underline{a}} = \hat{e}^{\mu}_{\underline{a}} F_{\mu\nu} u^{\nu} !$$

Audible relaxion

Audible relaxion

$$-\mathcal{L} \supset V(H,\phi) + \frac{r_X}{4} \frac{\phi}{f_{\phi}} X_{\mu\nu} \widetilde{X}^{\mu\nu}$$

$$V(H, \phi) = V_{\text{roll}}(\phi) + \mu_H^2(\phi)|H|^2 + \lambda|H|^4 + V_{\text{br}}(H, \phi)$$

Dark photon
friction essential
for trapping
relaxion after reheating

→ Potentially observable GW signal

GWs from kinetic misalignment

Consider the case of large initial $\dot{\phi}$

Detectable signal also for smaller decay constants

Fix ALP mass to fit DM relic abundance

Also consistent with Axiogenesis!

From Madge, Ratzinger, Schmitt, PS, 2111.12730

See also Co, Harigaya, Pierce, 2104.02077

Detectable region - update

From 2012.11584 with W. Ratzinger, B. Stefanek

Example source I: Dark sector phase transition

Note: Ω_d fixed to satisfy $N_{
m eff}$ constraints

Ramberg, Ratzinger & PS, 2209.14313

Source III: (global) cosmic strings

Note: Local strings mainly radiate from small loops and are thus NOT an efficient source of spectral distortions

Example source IV: Audible axions...

Not yet...

Results for scalar toy model

Constraints not as strong since fluctuations are not horizon size

Expect better sensitivity for axion fragmentation

Ramberg, Ratzinger & PS, 2209.14313

Fit with broken power law signals

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Challenge for model building → Hint for dark sector

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Some model parameters excluded by PTA data now!

Wolfram Ratzinger & PS, 2009.11875

At higher frequencies

LISA will probe above 10 GeV, colliders could fill gap

Supercooled phase transitions

Benchmark model: Coleman-Weinberg model with vanishing tree level potential $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi - V(\Phi,T)$

Two parameter model: Mass scale M and coupling g

Signal dominated by colliding bubbles and sound shells

Simulated by Lewicki and Vaskonen, 2208.11697

Supercooled phase transitions

Madge et al, 2306.14856

Comparison with 12 year data

Large supercooling and reheating

- Dilution of baryons, dark matter
- ► Two BBNs

Pheno: Light scalar $m_{\phi} \approx M$, decay to electrons and photons

Higgs portal not viable, instead

$$\mathcal{L} \supset c_{ee} \frac{|\Phi|^2}{\Lambda^2} LH\bar{e} + c_{\gamma\gamma} \frac{|\Phi|^2}{\Lambda^2} F_{\mu\nu} F^{\mu\nu}$$

FCC? Or low energy e+e- machine (e.g. MESA in Mainz)

Axion/ALP domain walls

Domain walls appear when discrete symmetries are spontaneously broken to degenerate ground states

Long lasting GW source, until DWs annihilate, before dominating the Universe ideally

Review: Saikawa, 1703.02576

Axion DW:
$$U(1)_{PQ} \rightarrow Z_N$$

Surface tension $\sigma = 8m_a f_a^2$

Annihilation triggered by QCD instantons

$$T_{\rm ann} \sim 1 \,{\rm GeV} \, \left(\frac{g_*(T_{\rm ann})}{80}\right)^{-\frac{1}{4}} \left(\frac{\Lambda_{\rm QCD}}{400 \,{\rm MeV}}\right)^2 \left(\frac{10^7 \,{\rm GeV}}{f_a}\right) \sqrt{\frac{10 \,{\rm GeV}}{m_a}}$$

Madge et al, <u>2306.14856</u>

Pushing the limits

