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Discrete symmetry breaking

Simple example: scalar field with Z2 symmetry
V (ϕ) = λ

4 (ϕ
2 − v2)2
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Symmetry broken below some Temperature TPT

ϕ takes different (uncorrelated) values (±v) at separations
larger than a certain correlation length ≤ H−1

Domain walls produced at TPT , ϕ(z) = v tanh(
√

λ/2vz)
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Domain Walls

ϕ(z) = v tanh(
√

λ/2vz).
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Thickness δ = (
√
λv)−1

Wall with energy per unit area (tension)

σ = 2

∫
dzV (z) ∝

√
λv3
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Axionic Domain Walls

Another example: Complex field with U(1) symmetry at
high T, broken to ZN at T = 0

V (Φ) = λ(|Φ|2 − v2)2 + V0 cos
(
N
a

v

)
Φ = |Φ|e i

a
v

T=0

high T

Discrete minima below some TPT

Domain walls are produced at TPT
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Domain Walls Cosmology

In expanding Universe with H = ȧ
a

At TPT (uncorrelated) values in different patches
(separated by ≤ O(H−1): causality)
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Domain Walls Cosmology

Initial complicated dynamics (need simulations)
Start at ϕ = 0 + small fluctuations =⇒ DW formation

Reach “Scaling regime”, O(1) walls per Hubble patch

By dimensional analysis ρDW |scaling ≈ σH
For σ large enough DWs quickly dominate over radiation
background, ρRAD = 3H2M2

Pl

=⇒ Domain wall problem! (unless σ1/3 ≲ 100 MeV )
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Way out: Domain Walls Annihilation

Possible way out:

Make them unstable, assuming a small ”bias” ∆V

Annihilation happens when ∆V becomes ≃ ρDW
Patches with ϕ = +v shrink (pressure gradients)
Alternatives:

Initial “population bias”
... maybe symmetry restoration at low-T? ”Inverse Phase
Transition” (Babichev et al. Phys.Rev.D 2023)
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Domain Walls Annihilation

We assume a potential “bias” ∆V (i.e. ϕ or ϕ3 potential term)

Annihilation (after ∆V ≃ ρDW ) takes some time:

Figure: Simulations from R.Ferreira, A.N., O.Pujolas, F. Rompineve,
JCAP 2024
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Domain walls radiate GW

GWs generated by large inhomogeneous stress energy
tensor Tab (Traceless and Transverse)

The metric for a GW is sourced by Tab

gab = ηab + hab

□hab = 2
TTT
ab

M2
Pl

=⇒ H2h ∼ σH
M2

Pl

ρGW =
M2

Pl
4 ḣij ḣ

ij =⇒ ρGW ≈ σ2

M2
Pl
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Domain walls radiate GW

Simple estimate, ρGW ≈ σ2

M2
Pl

(constant in time, as long as DW network exists)

ρGW ∝ a−4 (like radiation) after Domain Walls
annihilation

Simplest assumption: use scaling value at annihilation (t∗)

ρGW

ρRAD

∣∣∣∣
ANN

≈
σ2

M2
Pl

ρRAD

∣∣∣∣
ANN

× g∗T 4

g∗T 4
=

(
ρDW

ρRAD

)2 ∣∣∣∣
ANN

≡ α2
∗

Today: Ω0
GW ≈ Ω0

γ(
ρDW
ρRAD

)|2ANN ≈ 10−5α2
∗
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Relic GW from Domain walls

More precisely, simulations in scaling give

ΩGWh2 ≃ 0.05 (Ω0
γh

2) ϵ̃

(
ρDW
ρrad

)2

T=T∗

,

(ϵ̃ = 0.1− 1 is an efficiency parameter)

Peak at frequency H|T=T∗ (DW annihilation), redshifted
to today:

f 0peak =
T 2
∗

MPl

(
T0

T∗

)
≈ 10−9Hz

g∗(T⋆)

10.75

1
6 T⋆

10MeV
.

Two free parameters σ (or α∗) and T∗
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GW spectra: simulations

GW spectrum ρGW ≡
∫ dρGW

d log k
dk
k :

dρGW
d log k

=

{
f 3 for f < f 0peak, (causality)

f −1 for f > f 0peak , (until cutoff given by DW width).

Hiramatsu, Kawasaki, Saikawa, 2014 (grid size = 10243)

R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024) 020 (grid size = 20403)

Kitajima, Lee, Murai, Takahashi, Yin, 2306.17146, (grid size = 40963)
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GW Search from Domain Walls in PTA

Search for GW from Domain Walls :

ΩGW,DW(f )h
2 ≃ 10−10 ϵ̃

(
10.75

g∗(T⋆)

) 1
3 ( α⋆

0.01

)2
S

(
f

f 0p

)
,

where ϵ̃ ≃ 0.1− 1 (efficiency parameter)

S(x) models the shape:

S(x) =
(γ + β)δ

(βx−
γ
δ + γx

β
δ )δ

,

{
At low frequency S ∝ f 3

Athigh f , simulations suggest δ ≈ β ≈ 1 =⇒ S ∝ f −1

R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, e-Print: 2204.04228
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Decay of the network

Assume DW decay into ϕ quanta and subsequently:

Two scenarios{
ϕ Decay to Dark Radiation problem if too much
ϕ Decay to Standard Model Before BBN T∗ ≳ 3MeV

CASE I: Decay into DR

Abundance of DR, standard parameterization

∆Neff =
ρDR

ρν
≈ ρDW

ρν
= 13.6g∗|−1/3

T∗ α∗

,

Current limits ∆Neff ≲ 0.3− 0.37
(Planck 2018 + DESI BAO+ Pantheon+BBN, I. Allali, A.N., F.

Rompineve, 2404.15220 )
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NANOGRAV 15 year

North American Nanohertz Observatory for Gravitational
Waves (Agazie et al. Ap.J. Lett. (2023) )
Strong evidence for common-spectrum stochastic process

First evidence for HD angular correlation from GW
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NANOGRAV 15 year

Figure: Afzal et al. Ap.J. Lett. (2023)

Most “conservative” interpretation: GW from
SuperMassive Black Hole Binaries (SMBHB)

h(f ) = A
(

f
fyr

) 3−γ
2

,

Alternative: GWB from Early Universe
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NANOGRAV 15 year

NANOGrav analysis for several new physics models:

Figure: Afzal et al. Ap.J. Lett. (2023)

B10 < 1 means that H1 is disfavored, while B10 values in:

[100.0, 100.5], [100.5, 101.0], [101.0, 101.5], [101.5, 102.0], [102.0,∞)

interpreted as: negligibly small, substantial, strong, very strong, and

decisive evidence in favor of H1.
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NANOGrav analysis for several new physics models:

Figure: Afzal et al. Ap.J. Lett. (2023)
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Results (CASE I): Decay into Standard Model
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“The NANOGrav 15 yr Data Set: Search for Signals from New Physics” NANOGrav Collaboration,
Astrophys.J.Lett. 951 (2023).

See R. Z. Ferreira, A. N., O. Pujolàs and F. Rompineve, JCAP 02 (2023)

T∗ and α∗ could be traded for bias (∆V ) and tension (σ),

Bias points to ∆V
1
4 ≈ T∗ ≈ 100 MeV, close to QCD scale

In a Z2 model with V (ϕ) = λ(ϕ2 − v 2)2, =⇒ v ≈ (100TeV )/λ1/3
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See R. Z. Ferreira, A. N., O. Pujolàs and F. Rompineve, JCAP 02 (2023)

T∗ and α∗ could be traded for bias (∆V ) and tension (σ),

Bias points to ∆V
1
4 ≈ T∗ ≈ 100 MeV, close to QCD scale

In a Z2 model with V (ϕ) = λ(ϕ2 − v 2)2, =⇒ v ≈ (100TeV )/λ1/3



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

Results (CASE I): Decay into Standard Model

−1 0
log10 T∗/GeV

−1.5

−1.0

−0.5
lo

g
1
0
α
∗ N
G

1
5

−1.5 −1.0 −0.5
log10 α∗

dw-sm+smbhb

dw-sm

“The NANOGrav 15 yr Data Set: Search for Signals from New Physics” NANOGrav Collaboration,
Astrophys.J.Lett. 951 (2023).

See R. Z. Ferreira, A. N., O. Pujolàs and F. Rompineve, JCAP 02 (2023)
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Results (CASE II): Decay into Dark Radiation
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Currently constrained (Planck+BAO+SNe+BBN)

Future Forecast: ∆Neff ≳ 0.16 visible by forthcoming
experiments (Simons Observatory, DESI, Euclid)
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Overlap with LISA?
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Figure: J.Ellis et al., PhysRevD.109.023522

Depends on high k behavior: 1/k?

Work in progress...
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Primordial Black Holes?

During collapse DW contain False Vacuum “pockets”

Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024)

The local density αPOCKET ≡ ρ/ρRAD ∝ a4

Start with α∗ ≈ 0.1 =⇒ LOCALLY could reach
αPOCKET = O(1)?

PBH formation?
Danger of overproduction when fitting NANOGrav?
(Gouttenoire, Vitagliano, 2306.17841, Phys.Rev.D 2024)

Generic PBH production mechanism (dark matter)
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The local density αPOCKET ≡ ρ/ρRAD ∝ a4

Start with α∗ ≈ 0.1 =⇒ LOCALLY could reach
αPOCKET = O(1)?

PBH formation?
Danger of overproduction when fitting NANOGrav?
(Gouttenoire, Vitagliano, 2306.17841, Phys.Rev.D 2024)

Generic PBH production mechanism (dark matter)
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Closer look to: collapse of the network

Biased potential Vbias = ∆V
(
ϕ
v

)
, or Vbias = ∆V

(
ϕ
v

)3

Collapse starts at (conformal) time η∆V : when

σH = ∆V

Questions:

How fast False Vacuum volume fraction Ffv goes to zero?

When is the GW peak produced? During scaling or during
annihilation?

How many pockets could collapse into PBH?
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Closer look to: collapse of the network

Collapse starts at η∆V

Most structures have size rPOCKET(η∆V ) ≈ O(H−1) =⇒
shrink to zero in 1 Hubble time

We find GW peak delay in simulations: one Hubble time
later
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Collapse starts at η∆V

Most structures have size rPOCKET(η∆V ) ≈ O(H−1) =⇒
shrink to zero in 1 Hubble time

We find GW peak delay in simulations: one Hubble time
later
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Delay of GW peak

After production GW diluted as a−4 ∝ η−4

A small delay =⇒ order of magnitude more ΩGW

We find ηGW/η∆V ≈ 2 in simulations

36 38 40 42
0.2
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0.5

0.6

0.7

Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 2024
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False vacuum fraction

From simulations we fit the False vacuum fraction with:

Ffv = 0.5 exp
[
−
(

η
ηann

)p]

We find p = 3.0± 0.3 and ηann ≈ 1.3η∆V
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0

Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024)
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False vacuum fraction

From simulations Ffv = 0.5 exp

[
−
(

η

ηann

)3
]

Collapse starts at η∆V

Most structures have size rPOCKET(η∆V ) ≈ O(H−1) =⇒
collapse in 1 Hubble time

Very rare regions (“late birds”) with size
rPOCKET(η∆V ) ≳ O(H−1)

=⇒ collapse later (at rPOCKET(ηPBH) ≈ H−1)

Probability of having a domain of radius R0 in false vacuum at
initial time η∆V ,

P0(R0) =

(
1

2

)Npatches

=

(
1

2

)(
R0
L

)3

,

with L = η∆V (correlation length = Hubble size at η∆V )
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Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024) 020

At any time η: track back the initial radius R0 of the
pocket that reaches R(η) = 0.

FV fraction: all regions of size ≥ R0, dominated by R0

Approximate trajectories: R(η) ≈ R0 − w(η − η∆V )

R(η) = 0 =⇒ initial size R0 = w(η − η∆V ),

P(R0) ≈
(
1
2

)( wη
η∆V

)3
, (w ≈ 0.85)
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At any time η: track back the initial radius R0 of the
pocket that reaches R(η) = 0.
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“Late birds” collapse

Late birds could collapse to PBH

Compare Schwartzschild radius rs(t) = 2GM(t) with size
rPOCKET at horizon entry:

rs
rPOCKET

∣∣∣∣
hor.entry

=
2GM(t)

rPOCKET
=

2G ( 4π3 r3POCKET)ρPOCKET

rPOCKET
=

=
8πGρPOCKETr
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3

∣∣∣∣
hor.entry

=

=
8πGρPOCKET

3H2
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hor.entry

=

=
ρPOCKET

ρTOT

∣∣∣∣
hor.entry

= αPOCKET
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hor.entry



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

“Late birds” collapse

Late birds could collapse to PBH

Compare Schwartzschild radius rs(t) = 2GM(t) with size
rPOCKET at horizon entry:

rs
rPOCKET

∣∣∣∣
hor.entry

=
2GM(t)

rPOCKET

=
2G ( 4π3 r3POCKET)ρPOCKET

rPOCKET
=

=
8πGρPOCKETr

2
POCKET

3

∣∣∣∣
hor.entry

=

=
8πGρPOCKET

3H2

∣∣∣∣
hor.entry

=

=
ρPOCKET

ρTOT

∣∣∣∣
hor.entry

= αPOCKET

∣∣∣∣
hor.entry



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

“Late birds” collapse

Late birds could collapse to PBH

Compare Schwartzschild radius rs(t) = 2GM(t) with size
rPOCKET at horizon entry:

rs
rPOCKET

∣∣∣∣
hor.entry

=
2GM(t)

rPOCKET
=

2G ( 4π3 r3POCKET)ρPOCKET

rPOCKET
=

=
8πGρPOCKETr

2
POCKET

3

∣∣∣∣
hor.entry

=

=
8πGρPOCKET

3H2

∣∣∣∣
hor.entry

=

=
ρPOCKET

ρTOT

∣∣∣∣
hor.entry

= αPOCKET

∣∣∣∣
hor.entry



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

“Late birds” collapse

Late birds could collapse to PBH

Compare Schwartzschild radius rs(t) = 2GM(t) with size
rPOCKET at horizon entry:

rs
rPOCKET

∣∣∣∣
hor.entry

=
2GM(t)

rPOCKET
=

2G ( 4π3 r3POCKET)ρPOCKET

rPOCKET
=

=
8πGρPOCKETr

2
POCKET

3

∣∣∣∣
hor.entry

=

=
8πGρPOCKET

3H2

∣∣∣∣
hor.entry

=

=
ρPOCKET

ρTOT

∣∣∣∣
hor.entry

= αPOCKET

∣∣∣∣
hor.entry



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

“Late birds” collapse

Late birds could collapse to PBH

Compare Schwartzschild radius rs(t) = 2GM(t) with size
rPOCKET at horizon entry:

rs
rPOCKET

∣∣∣∣
hor.entry

=
2GM(t)

rPOCKET
=

2G ( 4π3 r3POCKET)ρPOCKET

rPOCKET
=

=
8πGρPOCKETr

2
POCKET

3

∣∣∣∣
hor.entry

=

=
8πGρPOCKET

3H2

∣∣∣∣
hor.entry

=

=
ρPOCKET

ρTOT

∣∣∣∣
hor.entry

= αPOCKET

∣∣∣∣
hor.entry



Domain Walls

Gravitational
Waves from
DWs

Pulsar Timing
Arrays (PTA)

Network
Collapse

PBH

“Late birds”: collapse threshold

Late birds with rs
rPOCKET

= αPOCKET

∣∣∣∣
hor.entry

= 1

=⇒ collapse into PBH when enter horizon

Late birds with rs
rPOCKET

= αPOCKET

∣∣∣∣
hor.entry

≲ 1

=⇒ could collapse slightly later inside horizon?

Degree of sphericity is crucial

Uncertainty on threshold =⇒ large uncertainty on
abundance
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Estimates of PBH abundance

Given an abundance α at DW collapse
(or, at GW peak) :

How many late birds reach

rs
rPOCKET

= αPOCKET

∣∣∣∣
hor.entry

= 1 ?

For NANOGRAV GW signal: Start with αGW ≈ 0.1

α grows as a4 ∝ η4 =⇒ αPOCKET = αGW

(
ηPBH
ηGW

)4

PBH Abundance: ρPBH
ρTOT

≈ FHUBBLESIZED
fv

∣∣∣∣
η=ηPBH

PBH mass: horizon mass at collapse epoch
(TPBH ≈ 10 ∼ 100 MeV)

After collapse scales like matter, cannot exceed present
abundance
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Estimates of PBH abundance

How large is the fraction of volume in Hubble-sized structures
FHUBBLESIZED

fv (η)?
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FRACTION Ffv(η)
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Probability of having a domain of size RH at initial time η∆V

(that enters Hubble at η)

P0(RH) = 2
−
(

RH
L

)3

(with L = η∆V Hubble size at η∆V )

R(η) ≈ RH − w(η − η∆V ), with w ≈ 0.85

Hubble sized when R(η) = η =⇒ initially RH = (1 + w)η

P(RH) ≈ 2
−( (1+w)η

η∆V
)3
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Phenomenology

Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 2024

PTA region =⇒ 1-100 M⊙Black Holes

GWs: peak at Hubble at TGW: 1/ω at large ω and ω3 at small ω
=⇒ GW signal overlap with various experiments

Asteroid mass 10−16M⊙ ≲ MPBH ≲ 10−11M⊙: PBHs all dark matter

Bounds on PBH from: Green, Kavanagh, 2021; Carr, Kuhnel, 2022
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Conclusions

PTAs signal:

Wait for next release NANOGrav/IPTA, confirm GWs?

DWs could account for it, collapsing at Temperature ≈ 0.1
GeV and α∗ ≈ 0.1

With current uncertainties: abundance of PBH with 1-100
M⊙ consistent with NANOGrav

Collapsing DWs could account for Dark Matter in Asteroid
mass PBHs:

Need TGW ≈ 106 − 108 GeV

Additonal signatures at GW interferometers (ET, LISA,
LVK)

More work needed to understand subhorizon collapse of
DWs
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Additonal signatures at GW interferometers (ET, LISA,
LVK)

More work needed to understand subhorizon collapse of
DWs
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Nambu-Goto equation

R ′′ +
(
n

R
− 3R ′ a

′
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)
γ−2 + a

∆V

σ
γ−3 = 0 , (1)

n = 2, 1 for spherical or cylindrical DW of comoving radius R. Case n = 0

corresponds to planar wall placed at z = R(η). Primes denote derivatives

w.r.t. conformal time (γ ≡ 1/
√
R ′2 − 1 .)
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Figure: Ratio of the initial radius R0 and the (conformal) time to reach
R(η) = 0, ∆η, of super-Hubble FV pockets.
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