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Discrete symmetry breaking

@ Simple example: scalar field with Z, symmetry

V(6) = (8 - 7

Domain Walls

@ Symmetry broken below some Temperature Tpr

@ ¢ takes different (uncorrelated) values (4v) at separations
larger than a certain correlation length < H™1

@ Domain walls produced at Tpr, ¢(z) = vtanh(y/\/2vz)
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Domain Walls

Domain Walls @ ¢(z) = vtanh(y/A\/2vz).

@ Thickness § = (\/Xv)_1

o Wall with energy per unit area (tension)

o= 2/sz(z) x VA3



Axionic Domain Walls

@ Another example: Complex field with U(1) symmetry at
high T, broken to Zyy at T =0

Domain Walls

V(®) = A2 — v2)2 + Vg cos (Né)

= [PV

W T=0

W highT

@ Discrete minima below some Tpr

@ Domain walls are produced at Tpt



Domain Walls Cosmology

@ In expanding Universe with H = g
Domain Walls
@ At Tpr (uncorrelated) values in different patches

(separated by < O(H™1): causality)

from ctc.cam.acuk

i domain walls
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o Initial complicated dynamics (need simulations)
o Start at ¢ = 0 + small fluctuations — DW formation
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scaling ~ oH

@ By dimensional analysis ppy



Domain Walls Cosmology

o Initial complicated dynamics (need simulations)
@ Start at ¢ = 0 + small fluctuations — DW formation
Domain Walls @ Reach "Scaling regime”, O(1) walls per Hubble patch

e By dimensional analysis ppy/|scaling =~ 0 H

@ For o large enough DWs quickly dominate over radiation
background, prap = 3H2/\/l,2>,

@ —> Domain wall problem! (unless c1/3 < 100 MeV )



Way out: Domain Walls Annihilation

@ Possible way out:
@ Make them unstable, assuming a small "bias” AV
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Way out: Domain Walls Annihilation

@ Possible way out:
@ Make them unstable, assuming a small "bias” AV
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@ Annihilation happens when AV becomes =~ ppw
@ Patches with ¢ = +v shrink (pressure gradients)
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Way out: Domain Walls Annihilation

@ Possible way out:
@ Make them unstable, assuming a small "bias” AV

25F
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@ Annihilation happens when AV becomes =~ ppw
@ Patches with ¢ = +v shrink (pressure gradients)
@ Alternatives:
o Initial “population bias”
e ... maybe symmetry restoration at low-T7? "Inverse Phase
Transition” (Babichev et al. PhysRev.D 2023)
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@ We assume a potential “bias” AV (i.e. ¢ or ¢* potential term)
@ Annihilation (after AV =~ ppyy) takes some time:
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Domain Walls Annihilation

@ We assume a potential “bias” AV (i.e. ¢ or ¢* potential term)
@ Annihilation (after AV =~ ppyy) takes some time:
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Domain Walls Annihilation

@ We assume a potential “bias” AV (i.e. ¢ or ¢* potential term)
@ Annihilation (after AV =~ ppyy) takes some time:
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Figure: Simulations from R.Ferreira, A.N., O.Pujolas, F. Rompineve,
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o GWs generated by large inhomogeneous stress energy
Gravitational tensor T, (Traceless and Transverse)
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@ The metric for a GW is sourced by T,
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Domain walls radiate GW

o GWs generated by large inhomogeneous stress energy
Gravitational tensor T, (Traceless and Transverse)

Waves from
DWs

@ The metric for a GW is sourced by T,

8ab = Nab + hab

T 2 H
Ohyy =278 = H2h~ 2
2
M2 = s o
pew = — hijh? = |Pew N o
PI
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Domain walls radiate GW
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@ Simple estimate,

Greviitienel (constant in time, as long as DW network exists)
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Domain walls radiate GW

Gravitational
Waves from
DWs

@ Simple estimate,

(constant in time, as long as DW network exists)

pew X a

4

annihilation

(like radiation) after Domain Walls

@ Simplest assumption: use scaling value at annihilation (t,)
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Domain walls radiate GW

@ Simple estimate,

Greviitienel (constant in time, as long as DW network exists)
Waves from
DWs
o | pew oc a*| (like radiation) after Domain Walls
annihilation

@ Simplest assumption: use scaling value at annihilation (t,)

o
o? 4 5
PCW M2, " &I (PDW ) =2
~ = = *
PRAD |[ANN  PRAD |ANN g Tt PRAD ANN

o Today: Q2 ~ Q%( )any = 107502

PDW
PRAD
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Relic GW from Domain walls
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@ Peak at frequency H|r—7, (DW annihilation), redshifted
to today:
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@ More precisely, simulations in scaling give

2
Qowh? ~ 0.05 (Q0h) € <’)DW> :
Prad ) T=T,
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Relic GW from Domain walls

@ More precisely, simulations in scaling give

2
Qowh? ~ 0.05 (Q0h) € <’)DW> :
Prad ) T=T,

Gravitational
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(¢ =0.1 -1 is an efficiency parameter)

@ Peak at frequency H|r—7, (DW annihilation), redshifted
to today:
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Relic GW from Domain walls

@ More precisely, simulations in scaling give

2
Qowh? ~ 0.05 (Q0h) € <’)DW> :
Prad ) T=T,

Gravitational
Waves from
DWs

(¢ =0.1 -1 is an efficiency parameter)

@ Peak at frequency H|r—7, (DW annihilation), redshifted

to today:
T2 [Ty g(T)s T
O, =—>(=) ~10°H & L
peak Mp/(T*> “710.75 10MeV

@ Two free parameters o (or av) and T,




GW spectra: simulations

_  dpaw dk .
o GW spectrum pgw = f dfg&r 3

dpew _ | for f < £, (causality)
Gravitational -
Wi o dlogk | f~* for f > f2 . (until cutoff given by DW width).

DWs
Hiramatsu, Kawasaki, Saikawa, 2014 (grid size = 10243)
R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024) 020 (grid size = 20403)

Kitajima, Lee, Murai, Takahashi, Yin, 2306.17146, (grid size = 40963)

Logy (w/Hz)



GW Search from Domain Walls in PTA

@ Search for GW from Domain Walls :

1
1075 \3 /o \2 [ f
Qe ow(F)h? =~ 10710 ¢ - —
sy (TS I 6<g*(T*)> <0.01> 5<f0>’

where € >~ 0.1 — 1 (efficiency parameter)

Pulsar Timing
Arrays (PTA)

@ S(x) models the shape:

R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, e-Print: 2204.04228




GW Search from Domain Walls in PTA

@ Search for GW from Domain Walls :

1
1075 \3 /o \2 [ f
Qe ow(F)h? =~ 10710 ¢ - —
sy (TS I 6<g*(T*)> <0.01> 5<f0>’

where € >~ 0.1 — 1 (efficiency parameter)

Pulsar Timing
Arrays (PTA)

@ S(x) models the shape:

(v +B)°
(Bx 7 +x

S(x) =

B
5

P

At low frequency S o 3
At high f, simulationssuggestd ~ f~1 = Soc f !

R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, e-Print: 2204.04228



Decay of the network

@ Assume DW decay into ¢ quanta and subsequently:

@ Two scenarios
{(b Decay to Dark Radiation problem if too much
¢ Decay to Standard Model Before BBN T, = 3MeV
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Decay of the network

Assume DW decay into ¢ quanta and subsequently:

Two scenarios

{qb Decay to Dark Radiation problem if too much
¢ Decay to Standard Model Before BBN T, = 3MeV

Pulsar Timing
Arrays (PTA)
o CASE I: Decay into DR
@ Abundance of DR, standard parameterization
ANy = OB POV _ 13 64,1730,

@ Current limits AN.g < 0.3 — 0.37
(Planck 2018 + DESI BAO+ Pantheon+BBN, 1. Allali, A.N., F.
Rompineve, 2404.15220 )



NANOGRAV 15 year

o North American Nanohertz Observatory for Gravitational
Waves (Agazie et al. Ap.J. Lett. (2023) )
@ Strong evidence for common-spectrum stochastic process

Pulsar Timing
Arrays (PTA)
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NANOGRAV 15 year
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Figure: Afzal et al. Ap.J. Lett. (2023)

@ Most “conservative” interpretation: GW from
SuperMassive Black Hole Binaries (SMBHB)
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@ Most “conservative” interpretation: GW from
SuperMassive Black Hole Binaries (SMBHB)
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NANOGRAV 15 year

o NANOGrav analysis for several new physics models:

NANOGRAV 15-YEAR NEW-PHYSICS SIGNALS
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Figure: Afzal et al. Ap.J. Lett. (2023)

Bio < 1 means that H1 is disfavored, while Bjg values in:
[100.07 100.5]’ []_00.57 10140]’ [101.07 101.5]7 []_01.57 10240]’ [102.07 OO)
interpreted as: negligibly small, substantial, strong, very strong, and

decisive evidence in favor of H1.



NANOGRAV 15 year

@ NANOGrav analysis for several new physics models:
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Figure: Afzal et al. Ap.J. Lett. (2023)



Results (CASE 1): Decay into Standard Model

B DW-SM+SMBHB
E pw-sm
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“The NANOGrav 15 yr Data Set: Search for Signals from New Physics” NANOGrav Collaboration,
Astrophys.J.Lett. 951 (2023).

See R. Z. Ferreira, A. N., O. Pujolas and F. Rompineve, JCAP 02 (2023)
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“The NANOGrav 15 yr Data Set: Search for Signals from New Physics” NANOGrav Collaboration,
Astrophys.J.Lett. 951 (2023).

See R. Z. Ferreira, A. N., O. Pujolas and F. Rompineve, JCAP 02 (2023)
@ T, and a. could be traded for bias (AV) and tension (o),
. . 1
@ Bias points to AV4 ~ T, ~ 100 MeV, close to QCD scale



Results (CASE 1): Decay into Standard Model

B DW-SM+SMBHB
E pw-sm
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“The NANOGrav 15 yr Data Set: Search for Signals from New Physics” NANOGrav Collaboration,
Astrophys.J.Lett. 951 (2023).

See R. Z. Ferreira, A. N., O. Pujolas and F. Rompineve, JCAP 02 (2023)
@ T, and a. could be traded for bias (AV) and tension (o),

@ Bias points to AVi ~ T, ~ 100 MeV, close to QCD scale

@ In a Z model with V(¢) = A\(¢? — v?)?, = v ~ (100TeV)/\!/3



Pulsar Timing
Arrays (PTA)

Results (CASE I1): Decay into Dark Radiation

B DW-DR+SMBHB
I ow-DR
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e Currently constrained (Planck++BAO+SNe+BBN)



Results (CASE I1): Decay into Dark Radiation

B DW-DR+SMBHB
I ow-DR

Pulsar Timing
Arrays (PTA)

.

—15 -1.0
logyo ANeft

- 0
logyo T4 /GeV

e Currently constrained (Planck++BAO+SNe+BBN)

@ Future Forecast: ANgg = 0.16 visible by forthcoming
experiments (Simons Observatory, DESI, Euclid)



Overlap with LISA?
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Overlap with LISA?
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@ Depends on high k behavior: 1/k?
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Overlap with LISA?
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Figure: J.Elis et al., PhysRevD.109.023522

@ Depends on high k behavior: 1/k?

@ Work in progress...



Primordial Black Holes?

@ During collapse DW contain False Vacuum “pockets”
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Primordial Black Holes?

@ During collapse DW contain False Vacuum “pockets”
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it Figure: R.Ferreira, A.N., O.Pujolas, F. Rompineve, JCAP 06 (2024)

Collapse

@ The local density apockeT = p/praD X a*

@ Start with a, = 0.1 = LOCALLY could reach
apocker = O(1)?
o PBH formation?

@ Danger of overproduction when fitting NANOGrav?
(Gouttenoire, Vitagliano, 2306.17841, Phys.Rev.D 2024)
o Generic PBH production mechanism (dark matter)



Closer look to: collapse of the network

3
o Biased potential Vi = AV (9) or Visae = AV (¢>

25

Network
Collapse



Closer look to: collapse of the network

3
o Biased potential Vi = AV (9) or Visae = AV (¢>

25

Network s o 05 00 05 10 1s
Collapse

@ Collapse starts at (conformal) time na\: when



Network
Collapse

Closer look to: collapse of the network

3
o Biased potential Vi = AV (9) or Visae = AV (¢>

25

@ Collapse starts at (conformal) time na\: when

@ Questions:

o How fast False Vacuum volume fraction F¢, goes to zero?



Network
Collapse

Closer look to: collapse of the network

3
o Biased potential Vi = AV (9) or Visae = AV (¢>

25

@ Collapse starts at (conformal) time na\: when
@ Questions:
o How fast False Vacuum volume fraction F¢, goes to zero?

o When is the GW peak produced? During scaling or during
annihilation?



Closer look to: collapse of the network

3
o Biased potential Vi = AV (9) or Visae = AV (¢>
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Network
Collapse

@ Collapse starts at (conformal) time na\: when
@ Questions:
o How fast False Vacuum volume fraction F¢, goes to zero?

o When is the GW peak produced? During scaling or during
annihilation?

o How many pockets could collapse into PBH?
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o Collapse starts at nay
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Closer look to: collapse of the network

o Collapse starts at nay

@ Most structures have size rpockeT(7AV) & (’)(H‘l) =
shrink to zero in 1 Hubble time

Scaling regime Network annihilation
Network H~m ocH~AV Tgw Tpbh
Collapse
l t : t >
DW formation GW peak PBH formation
. 7 \"
paw ~ o H FV fraction ~ exp |- ;

o We find GW peak delay in simulations: one Hubble time
later
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o After production GW diluted as a=* oc 1%
@ A small delay = order of magnitude more Qaw
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Delay of GW peak

o After production GW diluted as a=* oc 1%
@ A small delay = order of magnitude more Qaw
e We find ngw/nayv ~ 2 in simulations

Gravitational Waves, N = 2040, L = VN
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@ From simulations we fit the False vacuum fraction with:

o |Fp = 0.5exp [‘( . )p}

nann

o We find p =3.0 0.3 and 7ann =~ 1.30Av
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False vacuum fraction

3
@ From simulations | F¢, = 0.5 exp [— ( i )

Tlann

o Collapse starts at nay
@ Most structures have size rpocker(av) ~ O(H™1) =
collapse in 1 Hubble time

Network o Very rare regions (“late birds") with size

Collapse
i reockeT(nav) 2 O(H™1)
— collapse later (at rpockeT(nPBH) ~ H™1)

@ Probability of having a domain of radius Ry in false vacuum at
initial time nav,

Po(Ro) = (%)Npatches _ (%) (RTOY 7

with L = nay (correlation length = Hubble size at nay/)
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At any time 7: track back the initial radius Ry of the
pocket that reaches R(n) = 0.

FV fraction: all regions of size > Ry, dominated by Ry
Approximate trajectories: R(n) ~ Ry — w(n — nav)

R(n) =0 = initial size Ry = w(n —nav),

P(Ro) ~ (3)

wn \3
Gav)

(w ~ 0.85)
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“Late birds” collapse

@ Late birds could collapse to PBH

e Compare Schwartzschild radius rs(
rpocKET at horizon entry:

t) = 2GM(t) with size

_ s _ 26M(t) _ 2G(*FrdockeT)PPOCKET _
'POCKET |hor.entry B 'POCKET - 'POCKET

_ 87 G pPOCKET BOCKET _

3 hor.entry
_ 8rGppockET _
3H2 hor.entry
PPOCKET
= =——— = Q.POCKET
PTOT hor.entry hor.entry
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“Late birds": collapse threshold

. . r. _ _
Late birds with _;rPOCKET OPOCKET 1
hor.entry

—> collapse into PBH when enter horizon

. . re _ <
o Late birds with oCaT = (POCKET S

) ] _hor.entr_y
= could collapse slightly later inside horizon?

Degree of sphericity is crucial

@ Uncertainty on threshold = large uncertainty on
abundance
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Estimates of PBH abundance

@ Given an abundance o at DW collapse
(or, at GW peak) :

@ How many late birds reach

e = QPOCKET =17
hor.entry
@ For NANOGRAV GW signal: Start with agyy ~ 0.1

4

4
® agrows as a* o< 7)* = apockET = Q6w (nPBH)

new

o PBH Abundance: 2eBH %]:HUBBLESIZED
PTOT tv

N="PBH
@ PBH mass: horizon mass at collapse epoch
(Tpau ~ 10 ~ 100 MeV)

o After collapse scales like matter, cannot exceed present
abundance



Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
JFHUBBLESIZED ()9
- /



Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
FIUBBLESIZED (0)? « than TOTAL FALSE VACUUM
FRACTION F.(n)



Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
FIUBBLESIZED (0)? « than TOTAL FALSE VACUUM
FRACTION F.(n)

FV trajectories in the Nambu-Goto approximation
3|

R()

[i
1 2

6

2 3 4 5
@ Probability of having a domain"(/)?"size Ry at initial time nay
(that enters Hubble at 7)



Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
FIUBBLESIZED (0)? « than TOTAL FALSE VACUUM
FRACTION F.(n)

FV trajectories in the Nambu-Goto approximation
3|

R()

[i
1 2 4

- . \ . n/mav .5 C . .
@ Probability of having a domain of size Ry at initial time nay

6

(that enters Hubble at 7)

R\ 3
o Po(Ru) =2~ (F)" (with L = nay Hubble size at 5av)



Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
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Estimates of PBH abundance

@ How large is the fraction of volume in Hubble-sized structures
FIUBBLESIZED (0)? « than TOTAL FALSE VACUUM
FRACTION F.(n)

FV trajectories in the Nambu-Goto approximation

Ra)=n

Probability of having a domain ”c/)'ll“size Ry at initial time nay
(that enters Hubble at 7)

R\ 3

Po(Re) =2~ ()" (with L = nay Hubble size at nay)
R(n) = Ry — w(n — nav), with w ~ 0.85

Hubble sized when R(n) =1 = initially Ry = (1 + w)n

o P(RH) ~9 ((177+AW\377)
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EXCLUDED (TOO MANY PBHs)
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@ PTA region — 1-100 Mg Black Holes
@ GWs: peak at Hubble at Taw: 1/w at large w and w® at small w
=—> GW signal overlap with various experiments

@ Asteroid mass 107° My < Mppr < 107 My: PBHs all dark matter

Bounds on PBH from: Green, Kavanagh, 2021; Carr, Kuhnel, 2022
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Conclusions

@ PTAs signal:

o Wiait for next release NANOGrav/IPTA, confirm GWs?

o DWs could account for it, collapsing at Temperature ~ 0.1
GeV and a, =~ 0.1

o With current uncertainties: abundance of PBH with 1-100
Mg consistent with NANOGrav

@ Collapsing DWs could account for Dark Matter in Asteroid
mass PBHs:

o Need Tow =~ 100 — 108 GeV

o Additonal signatures at GW interferometers (ET, LISA,
LVK)

@ More work needed to understand subhorizon collapse of
DWs



EXTRA SLIDES



Nambu-Goto equation

/ AV
R" + <% — 3R’%> v 2+a 77_3 =0, (1)

n = 2,1 for spherical or cylindrical DW of comoving radius R. Case n =0
corresponds to planar wall placed at z = R(n). Primes denote derivatives

w.r.t. conformal time (y=1/VR?2—1.)

Collapse times vs. initial size
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Figure: Ratio of the initial radius Ry and the (conformal) time to reach
R(n) =0, An, of super-Hubble FV pockets.
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