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FIG. 5: ⌦GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ⇠CMB = 0, 2.33, 2.66 (the value of ⇠ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 55  56  57  58  59  60

� C
M

B

NCMB  (p=1)

ET

Adv LIGO

Current fNL limit

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 55  56  57  58  59  60

� C
M

B

NCMB  (p=2)

ET

Adv LIGO

Current fNL limit

FIG. 6: Region in the {NCMB , ⇠CMB} plane (values assumed by these quantities when the large scale CMB modes left the
horizon) for which the gravity wave signal is detectable at Advanced LIGO/VIRGO and Einstein Telescope. The left and right
panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e↵ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e↵ects start to play an important role in determining the evolution
of the homogeneous background, �(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇠CMB as small
as 2.33 (equivalent to f/(Mp↵)  0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp↵)  0.031) in the case of a quadratic potential.
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Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue
contours).
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data we use the full constraining power of Planck, i.e., Planck
TT,TE,EE+lowE+lensing, in combination with BK15.

The ��2 and the Bayesian evidence values for a selec-
tion of inflationary models with respect to the R2 model
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Figure 6. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines.
The theoretical lines have been obtained for rf = 1.5, and for r⇤, from bottom to top, equal to
0.25, 0.33, 0.38, 0.41, 0.43. All the theoretical curves are done for N = 60 e-folds of inflation.
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Figure 7. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines. The
theoretical solid lines have been obtained for rf = 8, and for r⇤, from bottom to top, equal to
0.005, 0.009, 0.012, 0.014, 0.015. The dotted line visible in the top-left corner is the theoretical predic-
tion of Natural Inflation. All the theoretical curves are done for N = 60 e-folds of inflation.

4.2 Inflation on valleys disconnected from minima

As we mentioned, in the 1
r
4
f

< r⇤ <
1
r
2
f

interval, inflation can occur on valleys that are

connected to the saddle point SB and that are disconnected from any minimum. Inflation ends
because the heavy direction becomes unstable. The tensor-to-scalar ratio in these trajectories
is significantly smaller than the one found for the valleys connected to a minimum. This is
visible in the two Figures 6 and 7, where, respectively, the two cases rf = 1.5 and rf = 8 are
studied (such values do not have any particular importance, and they have been chosen just
as a representative case of comparable axion scales, or somewhat hierarchical axion scales).

It is possible to reproduce analytically the results shown in these two figures with good
accuracy. Most of inflation occurs close to the saddle point, where the 1�field e↵ective
potential reads

V ' V0

2

41�
 
�̂

f̂

!2
3

5 , 0  �̂  �̂0 . (4.1)

– 14 –

Figure 3. Contour plot of (2.10), for parameters in the 1
r4f

< r⇤ <
1
r2f

region, together with valleys

(green) and crests (magenta). The two red curves are two distinct inflationary trajectories in this
model. They are obtained from a numerical evolution of the exact model (2.5). Both evolutions
shown contain 60 e-folds of inflation plus a brief transient moment after inflation in which the system
reaches the minimum.

The evolution shown in the figure is characterized by N = 60 e-folds of inflation along the
valley connected to SB; the following phase, from the moment the system leaves the valley
to when it first reaches the minimum, lasts for ' 2.9 e-folds. During this second stage, the
equation of state oscillates with average wave ' �0.16. This phase should be understood as
the beginning of the post-inflationary reheating.

4 {ns � r} phenomenology

In this Section we study the CMB phenomenology of Aligned Natural Inflation in the {ns � r}
plane. As discussed in the previous Section, we find two classes of inflationary trajectories in
this model: those along valleys connected to a minimum, and those along valleys disconnected
from any minimum. In the first case, inflation ends as the fields approach the minimum of
the potential; in the second case inflation terminates at the end of the valley, due to an
instability in the heavy  direction. This second class of solutions exist only for r⇤ in the

1
r
4
f
,

1
r
2
f

�
interval. 9

9To be precise, such an evolution can also take place for r⇤ slightly greater than 1
r2f

, so that evolutions

where inflation ends due to instability in the  direction are possible for 1
r4f

< r⇤ < 1
r2f

+ ✏, with ✏ small.

The reason for this is that, for r⇤ = 1
r2f

, one finds @2V2
@ 2 = 0 at the precise point where the valley connects

with the crest shown in the figure, so that the fields do not bend along the valley, but escape from it (ending
inflation), and again reach the minimum shown on the top of the figure. This behavior rapidly disappears
as r⇤ increases slightly above 1

r2f
, since @V2

@ > 0 all along the valley in this case. For the parameters used in

Figure 3, we numerically found that ✏ ' 0.004 (while 1
r2f

' 0.4444).
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FIG. 5: ⌦GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ⇠CMB = 0, 2.33, 2.66 (the value of ⇠ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e↵ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e↵ects start to play an important role in determining the evolution
of the homogeneous background, �(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇠CMB as small
as 2.33 (equivalent to f/(Mp↵)  0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp↵)  0.031) in the case of a quadratic potential.
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Figure 1. Diagramatic representation of the GW (left diagram) and scalar (right diagram) power
spectra sourced by the enhanced tensor mode tL. While in the non-Abelian models the GW are
sourced already at the linearized level, the scalar modes are sourced at the nonlinear level. The right
diagram is the interaction studied in this work.

Ref. [16] studied instead the case in which the inflaton field interacts with a SU(2) triplet
of vector fields having nonvanishing spatial vevs. The vevs are arranged to be orthogonal to
each other and of equal magnitude, so to lead to isotropic expansion. This model, dubbed
“Chromo-Natural Inflation” shares several analogies with the model of “Gauge-Flation” [37],

where a pseudo-scalar inflaton is absent and inflation is due to a
⇣
FF̃

⌘2
operator. (In fact,

Gauge-Flation can be viewed as a specific limit of Chromo-Natural Inflation, in which the
axion inflaton can be integrated out [38, 39].) The linear theory of cosmological perturbations
in Chromo-Natural Inflation was first studied in [40] in a low-energy e↵ective description of
the model, and then in [41–43] in the full model. The main features emerged from these
linarized studies is that the model is unstable in a specific regime of parameters (mQ <

p
2,

where mQ is introduced in eq. (2.6)), while it is outside the allowed ns � r region in the
complementary regime (where ns is the spectral tilt, and r the tensor-to-scalar ratio). 1

Several works modified the original model of [16] so to be compatible with data, including
the presence of a second axion inflaton [45] or a dilaton [46], a di↵erent inflation potential
[47–49], realizations in which the axion field is not the inflaton [50, 51], and a spontaneous
breaking of the SU(2) symmetry [52].

The existing phenomenological studies of these models are based on linearized perturba-
tion theory, with the exception of [53–55] that studied the nonlinear interactions in the tensor
sector, and the resulting GW bispectrum. Based on the results of the U(1) models, one could
expect that nonlinearities can be of relevance also in the scalar sector. The computation in
the non-Abelian context is however significantly more involved than in its U(1) counterpart:
even disregarding scalar metric perturbations (which is shown to be a justified assumption
[41, 43] - see Section 3.2), Chromo-Natural Inflation has three scalar perturbations coupled
to each other at the linearized level; this set comprises of the inflation perturbation plus two
linear combinations of perturbations of the gauge fields. For this reason already the linearized
computation is significantly more involved in the non-Abelian vs. the Abelian case, and we
expect this to be true also at the nonlinear level.

With this in mind, in the present work we only perform a first step toward the full
nonlinear computation. Specifically, we consider one nonlinear interaction of the inflaton
perturbation; this mode is the dominant scalar perturbation in the super-horizon regime,
where it coincides (up to negligible corrections) with the adiabatic mode ⇣ ' �

H

�̇
��. In the

U(1) case, the motion of the inflaton significantly amplifies one gauge field polarization at
horizon crossing. In the present context, the background dynamics amplifies one polarization

1As a consequence, one should expect that also Gauge-Flation is incompatible with data, as confirmed by
the analysis of [44].
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Figure 1. Diagramatic representation of the GW (left diagram) and scalar (right diagram) power
spectra sourced by the enhanced tensor mode tL. While in the non-Abelian models the GW are
sourced already at the linearized level, the scalar modes are sourced at the nonlinear level. The right
diagram is the interaction studied in this work.

Ref. [16] studied instead the case in which the inflaton field interacts with a SU(2) triplet
of vector fields having nonvanishing spatial vevs. The vevs are arranged to be orthogonal to
each other and of equal magnitude, so to lead to isotropic expansion. This model, dubbed
“Chromo-Natural Inflation” shares several analogies with the model of “Gauge-Flation” [37],

where a pseudo-scalar inflaton is absent and inflation is due to a
⇣
FF̃

⌘2
operator. (In fact,

Gauge-Flation can be viewed as a specific limit of Chromo-Natural Inflation, in which the
axion inflaton can be integrated out [38, 39].) The linear theory of cosmological perturbations
in Chromo-Natural Inflation was first studied in [40] in a low-energy e↵ective description of
the model, and then in [41–43] in the full model. The main features emerged from these
linarized studies is that the model is unstable in a specific regime of parameters (mQ <

p
2,

where mQ is introduced in eq. (2.6)), while it is outside the allowed ns � r region in the
complementary regime (where ns is the spectral tilt, and r the tensor-to-scalar ratio). 1

Several works modified the original model of [16] so to be compatible with data, including
the presence of a second axion inflaton [45] or a dilaton [46], a di↵erent inflation potential
[47–49], realizations in which the axion field is not the inflaton [50, 51], and a spontaneous
breaking of the SU(2) symmetry [52].

The existing phenomenological studies of these models are based on linearized perturba-
tion theory, with the exception of [53–55] that studied the nonlinear interactions in the tensor
sector, and the resulting GW bispectrum. Based on the results of the U(1) models, one could
expect that nonlinearities can be of relevance also in the scalar sector. The computation in
the non-Abelian context is however significantly more involved than in its U(1) counterpart:
even disregarding scalar metric perturbations (which is shown to be a justified assumption
[41, 43] - see Section 3.2), Chromo-Natural Inflation has three scalar perturbations coupled
to each other at the linearized level; this set comprises of the inflation perturbation plus two
linear combinations of perturbations of the gauge fields. For this reason already the linearized
computation is significantly more involved in the non-Abelian vs. the Abelian case, and we
expect this to be true also at the nonlinear level.

With this in mind, in the present work we only perform a first step toward the full
nonlinear computation. Specifically, we consider one nonlinear interaction of the inflaton
perturbation; this mode is the dominant scalar perturbation in the super-horizon regime,
where it coincides (up to negligible corrections) with the adiabatic mode ⇣ ' �

H

�̇
��. In the

U(1) case, the motion of the inflaton significantly amplifies one gauge field polarization at
horizon crossing. In the present context, the background dynamics amplifies one polarization

1As a consequence, one should expect that also Gauge-Flation is incompatible with data, as confirmed by
the analysis of [44].
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Ref. [16] studied instead the case in which the inflaton field interacts with a SU(2) triplet
of vector fields having nonvanishing spatial vevs. The vevs are arranged to be orthogonal to
each other and of equal magnitude, so to lead to isotropic expansion. This model, dubbed
“Chromo-Natural Inflation” shares several analogies with the model of “Gauge-Flation” [37],

where a pseudo-scalar inflaton is absent and inflation is due to a
⇣
FF̃

⌘2
operator. (In fact,

Gauge-Flation can be viewed as a specific limit of Chromo-Natural Inflation, in which the
axion inflaton can be integrated out [38, 39].) The linear theory of cosmological perturbations
in Chromo-Natural Inflation was first studied in [40] in a low-energy e↵ective description of
the model, and then in [41–43] in the full model. The main features emerged from these
linarized studies is that the model is unstable in a specific regime of parameters (mQ <
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where mQ is introduced in eq. (2.6)), while it is outside the allowed ns � r region in the
complementary regime (where ns is the spectral tilt, and r the tensor-to-scalar ratio). 1

Several works modified the original model of [16] so to be compatible with data, including
the presence of a second axion inflaton [45] or a dilaton [46], a di↵erent inflation potential
[47–49], realizations in which the axion field is not the inflaton [50, 51], and a spontaneous
breaking of the SU(2) symmetry [52].

The existing phenomenological studies of these models are based on linearized perturba-
tion theory, with the exception of [53–55] that studied the nonlinear interactions in the tensor
sector, and the resulting GW bispectrum. Based on the results of the U(1) models, one could
expect that nonlinearities can be of relevance also in the scalar sector. The computation in
the non-Abelian context is however significantly more involved than in its U(1) counterpart:
even disregarding scalar metric perturbations (which is shown to be a justified assumption
[41, 43] - see Section 3.2), Chromo-Natural Inflation has three scalar perturbations coupled
to each other at the linearized level; this set comprises of the inflation perturbation plus two
linear combinations of perturbations of the gauge fields. For this reason already the linearized
computation is significantly more involved in the non-Abelian vs. the Abelian case, and we
expect this to be true also at the nonlinear level.

With this in mind, in the present work we only perform a first step toward the full
nonlinear computation. Specifically, we consider one nonlinear interaction of the inflaton
perturbation; this mode is the dominant scalar perturbation in the super-horizon regime,
where it coincides (up to negligible corrections) with the adiabatic mode ⇣ ' �

H
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U(1) case, the motion of the inflaton significantly amplifies one gauge field polarization at
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D
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atic
representation

of
the

G
W

(left
diagram

)
and

scalar
(right

diagram
)
pow

er

spectra
sourced

by
the

enhanced
tensor

m
ode

t
L .

W
hile

in
the

non-A
belian

m
odels

the
G
W

are

sourced
already

at
the

linearized
level, the

scalar
m
odes

are
sourced

at
the

nonlinear
level.

T
he

right

diagram
is
the

interaction
studied

in
this

w
ork.

R
ef.

[16] studied
instead

the
case

in
w
hich

the
inflaton

field
interacts

w
ith

a
SU

(2)
triplet

of
vector

fields
having

nonvanishing
spatial vevs.

T
he

vevs
are

arranged
to

be
orthogonal to

each
other

and
of

equal
m
agnitude,

so
to

lead
to

isotropic
expansion.

T
his

m
odel,

dubbed

“C
hrom

o-N
atural Inflation”

shares
several analogies

w
ith

the
m
odel of “G

auge-F
lation”

[37],

w
here

a
pseudo-scalar

inflaton
is
absent

and
inflation

is
due

to
a ⇣

F
F̃ ⌘

2
operator.

(In
fact,

G
auge-F

lation
can

be
view

ed
as

a
specific

lim
it
of

C
hrom

o-N
atural

Inflation,
in

w
hich

the

axion
inflaton

can
be

integrated
out

[38, 39].)
T
he

linear
theory

of cosm
ological perturbations

in
C
hrom

o-N
atural

Inflation
w
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first
studied
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[40]

in
a
low

-energy
e↵ective

description
of

the
m
odel,

and
then

in
[41–43]
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the

full
m
odel.
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he
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ain
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em

erged
from

these

linarized
studies

is
that

the
m
odel is

unstable
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a
specific

regim
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of
param
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(m
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<

p
2,

w
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m
Q

is
introduced

in
eq.

(2.6)),
w
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it
is
outside

the
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n
s
�
r
region

in
the

com
plem

entary
regim

e
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n
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is
the

spectral tilt, and
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tensor-to-scalar
ratio). 1

Several w
orks
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odified

the
original m

odel of [16] so
to
be

com
patible

w
ith

data, including

the
presence

of
a
second

axion
inflaton

[45]
or

a
dilaton

[46],
a
di↵erent

inflation
potential

[47–49],
realizations

in
w
hich

the
axion

field
is
not

the
inflaton

[50,
51],

and
a
spontaneous

breaking
of
the

SU
(2)

sym
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etry

[52].
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existing
phenom

enological studies
of these

m
odels

are
based

on
linearized

perturba-

tion
theory, w

ith
the

exception
of [53–55] that

studied
the

nonlinear
interactions

in
the

tensor

sector, and
the

resulting
G
W

bispectrum
.
B
ased

on
the

results
of the

U
(1)

m
odels, one

could

expect
that

nonlinearities
can

be
of

relevance
also

in
the

scalar
sector.

T
he

com
putation

in

the
non-A

belian
context

is
how

ever
significantly

m
ore

involved
than

in
its

U
(1)

counterpart:

even
disregarding

scalar
m
etric

perturbations
(w
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is
show

n
to

be
a
justified

assum
ption

[41,
43]

-
see

Section
3.2),

C
hrom

o-N
atural

Inflation
has

three
scalar

perturbations
coupled

to
each

other
at

the
linearized

level; this
set

com
prises

of
the

inflation
perturbation

plus
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o

linear
com

binations
of perturbations

of the
gauge

fields.
For

this
reason

already
the

linearized

com
putation

is
significantly

m
ore

involved
in

the
non-A

belian
vs.

the
A
belian

case,
and

w
e

expect
this

to
be

true
also

at
the

nonlinear
level.

W
ith

this
in

m
ind,

in
the

present
w
ork

w
e
only

perform
a
first

step
tow

ard
the

full

nonlinear
com

putation.
Specifically,

w
e
consider

one
nonlinear

interaction
of

the
inflaton

perturbation;
this

m
ode

is
the

dom
inant

scalar
perturbation

in
the

super-horizon
regim

e,

w
here

it
coincides

(up
to

negligible
corrections)

w
ith

the
adiabatic

m
ode

⇣
'
�
H
�̇

�
�
.
In

the

U
(1)

case,
the

m
otion

of
the

inflaton
significantly
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plifies

one
gauge

field
polarization

at

horizon
crossing.

In
the

present
context, the

background
dynam

ics
am

plifies
one

polarization

1
A
s
a
consequence,

one
should

expect
that

also
G
auge-F

lation
is
incom

patible
w
ith

data,
as

confirm
ed

by

the
analysis

of
[44].
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FIG. 2. (Top) Power spectrum of ⇣ in the case of weak back-
reaction. The shaded region, delimited by black dashed lines,
shows the analytical prediction of eq. (2). The blue dashed
line shows the vacuum contribution Pvac. (Bottom) Equilat-
eral bispectrum of ⇣ compared to the analytical prediction.

⇣/� Ne

FIG. 3. (Left) Normalized histograms of ⇣ in real space in
the case of weak backreaction. (Right) Time evolution of the
correlators defined in eq. (5).

find that 5 > 4 > 3 at late times. This means that
higher-order statistics are at least as important as the 3-
point function to characterize non-Gaussianity of ⇣. This
has observational consequences, as discussed below.

IV. STRONG BACKREACTION

We now turn to the case of strong backreaction. We
set the gauge coupling to ↵/f = 25, so that the imprints
of the Chern-Simons coupling on ⇣ are unobservable at

CMB scales2 [15–18]. Later during inflation, however, ⇠
increases and the universe eventually enters a nonlinear
phase.
We start the simulation when � = �5.5. With this

choice, the universe is still in the weak backreaction phase
at the beginning of the simulation. Then, after roughly
2 e-folds, the system enters a strong backreaction phase
where the bound of eq. (3) is violated and eq. (2) gives
P⇣ ⇠ 0.1, which indicates a breakdown of perturbativity.
We show results from a run with (N,L) = (256, 1.5/m),
but we tested our simulation also with other values of
(N,L) to ensure that our results are physical and do not
depend on the spatial resolution. Moreover, we ensured
the stability of the time integration by checking energy
conservation and time-step convergence.
In the right panel of fig. 1 we show the evolution of ⇠

during the simulation. We find the departure from the
slow-roll trajectory as an oscillatory behavior in ⇠. This
is intuitive, as one can see from eq. (4) that a strong
FF̃ leads to a depletion of the inflaton velocity; this low-
ers the value of ⇠ and reduces the backreaction, bringing
the system momentarily back to the slow-roll trajectory.
Oscillations of similar period and size were already pre-
dicted by previous studies [59, 64–66], which explored
backreaction e↵ects using semi-analytical tools. Another
consequence of the backreaction is that, after 6.5 e-folds
of evolution, the background inflaton value is � = �3.02.
This value would be reached after 5.4 e-folds of evolution
if the backreaction were negligible, which means that the
backreaction significantly delays the background dynam-
ics.

In fig. 4 we show the histograms of ⇣ and the evolu-
tion of the cumulants i. These plots show that the non-
Gaussianity of ⇣ substantially decreases during the strong
backreaction phase. At late times, it is mainly described
by a (small) negative 4, while the other cumulants are
negligible. Moreover, 5 shows oscillations. The suppres-
sion of non-Gaussianity in this regime is a consequence
of the central limit theorem, and it is caused by the fact
that the number of excited gauge field modes grows with
⇠. To understand this, we expand the source term FF̃ in
Fourier space as follows:

⇣
Fµ⌫ F̃

µ⌫
⌘
(k) =

X

k0

Fµ⌫(k
0) F̃µ⌫(k � k

0). (6)

This shows that each Fourier mode of FF̃ is the sum of
several non-Gaussian quantities. For ⇠ ⇠ 1, there are
few elements contributing to this sum due to the small
number of excited gauge field modes. For ⇠ � 1, the

2 The coupling can be constrained down to ↵/f . 15 using grav-
itational waves from preheating [52, 53]. Here we choose to fo-
cus only on bounds from inflationary physics. One motivation
is that, as explained for example in Refs. [53, 59], preheating
bounds strongly depend on the dynamics of the final e-folds of
inflation, which is still unknown for higher values of ↵/f .
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Dall’Agata, González-Mart́ın, Papageorgiou, MP ’19

AS

�N ⇠ 5

• Confirmed by full lattice simulation � (t, ~x) , A
µ (t, ~x)

• Oscillatory behaviour from simplified (homogeneous �) numerical solu-
tions

Cheng, Lee, Ng ’15; Notari, Tywoniuk ’16;
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violation of these assumptions invalidates the perturba-
tion theory approach and requires nonlinear tools, such
as presented in this paper.

II. LATTICE SIMULATION

Our simulation is based on the methodology developed
in Ref. [55, 56], to which we refer for details. We dis-
cretize the classical equations of motion in real space. We
choose to work in the Lorenz gauge @

µ
Aµ = 0, in which

the equations read [48]:

�
00 + 2H�

0 � @j@j�+ a
2 @V

@�
= �a

2 ↵

4f
Fµ⌫ F̃

µ⌫
,

A
00
0 � @j@jA0 =

↵

f
✏ijk@k�@iAj ,

A
00
i � @j@jAi =

↵

f
✏ijk�

0
@jAk � ↵

f
✏ijk@j�(A

0
k � @kA0),

(4)

where i, j, k 2 {1, 2, 3} and the prime denotes deriva-
tives with respect to conformal time. The scale factor in
eq. (4) is evolved self-consistently with the second Fried-
mann equation. As commonly done in the literature [15–
18, 57–60], we neglect the role of metric perturbations.
This assumption relies on the decoupling argument which
states that the field dynamics of models characterized by
large non-Gaussianity is expected to be decoupled from
the gravitational sector [61].

To solve this system of equations, we associate field val-
ues �n1,n2,n3 and Aµ,n1,n2,n3 to the N

3 points of a peri-
odic cubic lattice with comoving volume L3. After defin-
ing a discretization scheme for the spatial derivatives1,
eq. (4) constitute a set of second order coupled di↵erential
equations that we solve numerically with a Runge-Kutta
4th order integrator. We start the simulation when the
lattice box size satisfies L . 1/(aH), so that the fields
are approximately in their Bunch-Davies vacuum state
at the beginning of the simulation. Note that we are not
enforcing the gauge condition @

µ
Aµ = 0 on the lattice.

For this reason, we need to check by hand that @
µ
Aµ

vanishes with su�cient precision throughout the evolu-
tion. We find that the dimensionless gauge constraint

@
µ
Aµ/

qP
⇢ |@⇢A⇢|2 is always smaller than 3⇥ 10�4 for

all the simulation runs shown below.

III. NEGLIGIBLE BACKREACTION

We show the results of the simulation starting from
the case when backreaction is negligible (see eq. (3)), and

1 See Ref. [56] for details on our discretization procedure, which
allows to consistently define the comoving momenta of the sim-
ulations k appearing in figs. 2 and 5.

⇠

Ne Ne

FIG. 1. Time evolution of the ⇠ parameter as a function of the
number of e-folds Ne, in the case of negligible backreaction
(left) and strong backreaction (right).

compare them to the known analytical results. We as-
sume a monodromy potential for the inflaton [62] V (�) =
1
2m

2
�
2 with m = 0.51 · 10�5. The system is initiated far

from the end of inflation by setting � = �14.5. We run
a simulation with N

3 = 2563 points and comoving size
L = 2/m. We evolve the system for Ne = 6 e-folds, which
makes the simulation box satisfy L � 1/(aH) at the end
of the simulation. For this run, we set the gauge coupling
↵/f = 42, which is excluded by CMB observations but
allows us to better compare the results of the simulation
with the existing analytical estimates. Below we consider
a more realistic value of the coupling. In the left panel of
fig. 1 we show the value of ⇠ during this simulation, which
monotonically grows following the slow-roll trajectory.
In the upper panel of fig. 2 we show the power spectrum

of the comoving curvature perturbation ⇣ ⌘ ���H/�̇

at di↵erent times during the simulation. We com-
pare the final power spectrum with eq. (2), which is
shown as a shaded region as ⇠ varies during the evo-
lution. The black dashed lines delimiting this region
are computed using the initial and final values of ⇠.
In the bottom panel of fig. 2 we show the bispectrum
B⇣(k) ⌘ h⇣(~k1)⇣(~k2)⇣⇤(~k1 + ~k2)i on equilateral configu-

rations k ⌘ |~k1| = |~k2| = |~k1 + ~k2| at the final time, and
compare it to the analytical estimate of Ref. [17]. We
find that both the bispectrum and the power spectrum
are in agreement with the analytical estimates. Note that
for the largest modes there is a drop in the lattice spec-
tra, which is unphysical and it is caused by the lattice
UV cuto↵.
Thanks to the lattice approach, we have access to the

curvature perturbation in real space. In the left panel of
fig. 3 we show the normalized histograms of the values
of ⇣ across the N

3 points at di↵erent times during the
simulation. We find that non-Gaussianity manifests as a
pronounced tail in the distribution of ⇣. To quantify non-
Gaussianity, we compute the cumulants of the one-point
probability density function [63]:

3 =
h⇣3i
�3

, 4 =
h⇣4i � 3�4

�4
, 5 =

h⇣5i � 10h⇣3i�2

�5
,

(5)
which we normalized by powers of �

2 = h⇣2i to make
them dimensionless. In the right panel of fig. 3 we show
the evolution of the cumulants during the simulation. We
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choose to work in the Lorenz gauge @

µ
Aµ = 0, in which

the equations read [48]:
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where i, j, k 2 {1, 2, 3} and the prime denotes deriva-
tives with respect to conformal time. The scale factor in
eq. (4) is evolved self-consistently with the second Fried-
mann equation. As commonly done in the literature [15–
18, 57–60], we neglect the role of metric perturbations.
This assumption relies on the decoupling argument which
states that the field dynamics of models characterized by
large non-Gaussianity is expected to be decoupled from
the gravitational sector [61].

To solve this system of equations, we associate field val-
ues �n1,n2,n3 and Aµ,n1,n2,n3 to the N

3 points of a peri-
odic cubic lattice with comoving volume L3. After defin-
ing a discretization scheme for the spatial derivatives1,
eq. (4) constitute a set of second order coupled di↵erential
equations that we solve numerically with a Runge-Kutta
4th order integrator. We start the simulation when the
lattice box size satisfies L . 1/(aH), so that the fields
are approximately in their Bunch-Davies vacuum state
at the beginning of the simulation. Note that we are not
enforcing the gauge condition @

µ
Aµ = 0 on the lattice.

For this reason, we need to check by hand that @
µ
Aµ

vanishes with su�cient precision throughout the evolu-
tion. We find that the dimensionless gauge constraint

@
µ
Aµ/

qP
⇢ |@⇢A⇢|2 is always smaller than 3⇥ 10�4 for

all the simulation runs shown below.

III. NEGLIGIBLE BACKREACTION

We show the results of the simulation starting from
the case when backreaction is negligible (see eq. (3)), and

1 See Ref. [56] for details on our discretization procedure, which
allows to consistently define the comoving momenta of the sim-
ulations k appearing in figs. 2 and 5.

⇠

Ne Ne

FIG. 1. Time evolution of the ⇠ parameter as a function of the
number of e-folds Ne, in the case of negligible backreaction
(left) and strong backreaction (right).

compare them to the known analytical results. We as-
sume a monodromy potential for the inflaton [62] V (�) =
1
2m

2
�
2 with m = 0.51 · 10�5. The system is initiated far

from the end of inflation by setting � = �14.5. We run
a simulation with N

3 = 2563 points and comoving size
L = 2/m. We evolve the system for Ne = 6 e-folds, which
makes the simulation box satisfy L � 1/(aH) at the end
of the simulation. For this run, we set the gauge coupling
↵/f = 42, which is excluded by CMB observations but
allows us to better compare the results of the simulation
with the existing analytical estimates. Below we consider
a more realistic value of the coupling. In the left panel of
fig. 1 we show the value of ⇠ during this simulation, which
monotonically grows following the slow-roll trajectory.
In the upper panel of fig. 2 we show the power spectrum

of the comoving curvature perturbation ⇣ ⌘ ���H/�̇

at di↵erent times during the simulation. We com-
pare the final power spectrum with eq. (2), which is
shown as a shaded region as ⇠ varies during the evo-
lution. The black dashed lines delimiting this region
are computed using the initial and final values of ⇠.
In the bottom panel of fig. 2 we show the bispectrum
B⇣(k) ⌘ h⇣(~k1)⇣(~k2)⇣⇤(~k1 + ~k2)i on equilateral configu-

rations k ⌘ |~k1| = |~k2| = |~k1 + ~k2| at the final time, and
compare it to the analytical estimate of Ref. [17]. We
find that both the bispectrum and the power spectrum
are in agreement with the analytical estimates. Note that
for the largest modes there is a drop in the lattice spec-
tra, which is unphysical and it is caused by the lattice
UV cuto↵.
Thanks to the lattice approach, we have access to the

curvature perturbation in real space. In the left panel of
fig. 3 we show the normalized histograms of the values
of ⇣ across the N

3 points at di↵erent times during the
simulation. We find that non-Gaussianity manifests as a
pronounced tail in the distribution of ⇣. To quantify non-
Gaussianity, we compute the cumulants of the one-point
probability density function [63]:

3 =
h⇣3i
�3

, 4 =
h⇣4i � 3�4

�4
, 5 =

h⇣5i � 10h⇣3i�2

�5
,

(5)
which we normalized by powers of �

2 = h⇣2i to make
them dimensionless. In the right panel of fig. 3 we show
the evolution of the cumulants during the simulation. We
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Dall’Agata, González-Mart́ın, Papageorgiou, MP ’19

AS

�N ⇠ 5

• Confirmed by full lattice simulation � (t, ~x) , A
µ (t, ~x)

Caravano, Komatsu, Lozanov, Weller ’22

• Interpreted as delayed e↵ect between the moment the gauge

quanta are produced and the moment they backreact on � (t).

Domcke, Guidetti, Welling, Westphal ’20

Gradient Expansion Formalism

•
⌦
~E · ~B

↵
in inflaton e.o.m.,

⌦
~E · ~E

↵
and

⌦
~B · ~B

↵
in energy

• Rater than ~A

�
~k

�
e.o.m., build a recursive tower of eqs. for

⌦
~E · ~rn ⇥ ~E

↵
,

⌦
~E · ~rn ⇥ ~B

↵
,

⌦
~B · ~rn ⇥ ~E

↵
,

⌦
~B · ~rn ⇥ ~B

↵

Gorbar, Schmitz,

Sobol, Vilchinskii ’21

Gradient Expansion Formalism

•
⌦
~E · ~B

↵
in inflaton e.o.m.,

⌦
~E · ~E

↵
and

⌦
~B · ~B

↵
in energy

• Rater than ~A

�
~k

�
e.o.m., build a recursive tower of eqs. for

⌦
~E · ~rn ⇥ ~E

↵
,

⌦
~E · ~rn ⇥ ~B

↵
,

⌦
~B · ~rn ⇥ ~E

↵
,

⌦
~B · ~rn ⇥ ~B

↵

Gorbar, Schmitz,

Sobol, Vilchinskii ’21



The instability of Anber and Sorbo

MP, Sorbo ’22

• Analytical study: � (t) = �̄ (t) + �� (t) , A
µ
�
t,~k

�
= Ā
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⇠ =
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2HMP
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characterizing the gauge-field production. Equation (2.25) has an exact solution in terms

of Whittaker functions. The Bunch-Davies boundary condition (2.19) allows to extract a

unique solution which has the form

A�(⌧, k) =
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p
2k

W�i�⇠, 12
(2ik⌧), (2.27)

where W,µ(z) is the Whittaker W function. If we take for definiteness ⇠ > 0, the mode

A� is not enhanced and, therefore, can be neglected. At the same time, for the mode A+

a tachyonic instability occurs for k < 2⇠aH and it gets exponentially amplified. This can

be seen from an approximate expression for A+ in terms of elementary functions which is

usually considered in the literature [2]:
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It is valid for x ⌧ 2⇠ and allows to get a simple result for the Chern-Pontryagin density of

the produced field:
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In other words, we take the system of the inflaton and gauge fields and assume that the49

gauge field immediately responds to the changes in the inflaton field. Moreover, the value50

of hE ·Bi at an arbitrary moment of time t is determined by values of parameters H and51

⇠ at this moment of time via Eq. (2.29). We will see that this definition is more general52

than Eq. (2.24) and in a particular case of constant background quantities H and ⇠ it gives53

an exact solution of the system.54

2.3 Gradient expansion formalism55

An alternative way to treat axion inflation in position space is the gradient-expansion

formalism [4]. Let us introduce the following set of bilinear gauge-field functions:

E(n) =
1

an
hE · rotnEi , (2.31)
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Figure 2. Eigenvalues of a linearized gradient-expansion system with ncut = 70 (red dots) and
solutions of Eq. (3.14) in Ref. [3] (green circles) in a complex ⇣ plane for ⇠0 = 7 and � = 102.5. The
contour plot in the background shows the deviation from equality in Eq. (3.14) in Ref. [3].

Figure 3. (a) Real and (b) imaginary part of the eigenvalue ⇣1 corresponding to the fastest growing
mode as functions of ⇠0. A band of finite width corresponds to di↵erent values of � 2 [101.5, 103.5].
The blue band follows from the result of a linearized GEF. The green band shows the solution of
Eq. (3.14) in Ref. [3]. The red dashed line in panel (b) corresponds to an analytical estimate in
Ref. [5].
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Figure 6. Late time evolution of (a) the parameter ⇠ and (b) energy densities for ⇠0 = 7, � = 102.5,
and fine-tuning �⇠0/⇠0 = 10�6. The vertical dashed lines show the moment of time N = NAS when
the linear perturbation theory breaks down (relative deviation of ⇠ from its initial value becomes
greater than 10�1/2).

4 Slow-roll corrections76

Figure 7. Time evolution of (a) the parameter ⇠ and (b) energy densities for the initial value ⇠0 = 7
and the axial-vector coupling constant � = 102.5 in the realistic inflationary model. The blue solid
lines show the true solution of the system found by GEF while the red dashed lines correspond
to the enforced AS solution. The vertical dashed lines show the moment of time N = NAS when
the linear perturbation theory breaks down (relative deviation of ⇠ from its initial value becomes
greater than 10�1/2). The vertical dotted lines show the end of inflation in the real system (blue)
and with enforced AS solution (red).
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2) Fully numerical solution starting from AS
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Moral: AS solution unstable and not viable for steep potentials; however,
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2) E↵ect of � inhomogeneities?
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1) Analytic linear system for ��̇, �E(m)
, �B(m)

, �G(m)

obtain eigenvalues numerically

vs. analytic solution (MP, Sorbo ’22)
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2) Fully numerical solution starting from AS

(existing ones from weak backreaction)
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Figure 3. Plot of the backreaction spectrum defined in eq. (4.2). Di↵erent panels correspond to
di↵erent times, indicated by the value of N on the vertical scale. For each panel: the blue (red) line
corresponds to a positive (negative) contribution of a given mode to the backreaction at the end of
inflation; the grey dashed horizontal line is the reference point that the backreaction spectrum must
reach in order to be important in the evolution of the inflaton and is equal to one; The green line
indicates the mode that crosses the horizon at that given moment; the solid red vertical line is the
threshold between stability and instability k̃thr given by eq. (3.2); the black dashed vertical line is
the backreaction cuto↵ k̃reg defined in eq. (C.5); the grey the dotted vertical line is the gauge mode
vacuum evolution cuto↵ k̃vac defined in eq. (3.5).

We see from the figure that the oscillatory features in the particle production param-
eter ⇠ are also inherited by the sourced GWs spectrum, which also oscillates around an
average value. The frequency of these oscillations matches the corresponding periodicity of
the particle production parameter as a function of e-folds. For our choice of parameters the
oscillations of the power spectrum cover a wide range of experiments from PTA, to astrom-
etry, to space-based interferometers. The exact positioning of the peaks and the width of
the overall signal depends on the exact shape of the potential and one can imagine that any
potential whose slope varies in a qualitatively similar way to our example will necessarily
imply the emergence of a power spectrum that shares the features osberved in Figure 4. We
see that, for essentially all the scales in which the sourced GWs are significant, one circular
GW polarization is produced with much greater amplitude than the other one. Although
this is a well known result of this mechanism [3], a novel e↵ect that appears from our results
is that the level of parity violation varies widely depending on the scales under consideration.
Just to make an example, for the three points marked with, respecively, squares, stars and
triangles in Figure 4 the chirality parameter defined as

�� =
Ph,+ � Ph,�
Ph,+ + Ph,�

. (4.3)
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FIG. 1. Top Row: Evolution of the electromagnetic (purple) and inflaton potential (black), kinetic (red) and gradient (blue)
energy densities, all normalized to the total energy density of the system, for ↵⇤ = 15, 18, 20. Solid (dashed) lines correspond
to lattice simulations with inhomogeneous (homogeneous) backreaction. Bottom Row: Evolution of ⇠ for the same coupling
constants, corresponding to simulations with inhomogeneous (black solid) and homogeneous (black dashed) backreaction, and
to gradient expansion [58, 59] (green solid) and iterative method [19] (magenta dashed). Solid and dashed vertical lines signal
the end of inflation in each case. Evolution in the linear regime (black dash-dotted) is also shown for completeness.

ing limits, confirming the validity of the code.
We define the power spectrum of the gauge field as

�(�)
A

(k, t) ⌘ k
3

2⇡2P(�)
A

(k, t), where h ~A(�)(~k, t) ~A(�0)⇤(~k0, t)i
⌘ (2⇡)3P(�)

A
(k, t)���0�D(~k � ~k

0) represents an ensemble
average. In Fig. 2 we plot various power spectra for a
fiducial value ↵⇤ = 18, and compare the outcome of our
inhomogeneous treatment against the solutions of the ho-
mogeneous backreaction and linear regimes. In Fig. 3 we
also show the helicity imbalance measured through a nor-
malized spectral helicity observable defined as

H(k, t) ⌘ �(+)
A

��(�)
A

�(+)
A

+�(�)
A

. (7)

The inclusion of the inhomogeneous terms brings con-
siderable novelties into the dynamics:

1.- The gauge energy ⇢EM grows exponentially fast
during the linear regime, until it reaches a few % of ⇢K.
The latter, that had been previously slowly growing on a
slow-roll trajectory, starts then decreasing, signaling the
onset of backreaction. In the homogeneous case, ⇢EM and
⇢K may perform some large oscillations [19, 56], almost in
opposite phase. Such oscillations are however damped in

the inhomogeneous dynamics, where the gradient energy
⇢G is also significantly excited, with its contribution po-
tentially comparable or even higher than ⇢K. This could
never be captured in the homogeneous regime, where by
construction ⇢G = 0. In the homogeneous case, for some
couplings (e.g. ↵⇤ = 15) the first and largest oscillation
leads h�̇i to even flip its sign, with ⇠ crossing zero back
and forth (depicted in the figure by dotted lines), signal-
ing that the inflaton climbs its own potential. This, how-
ever, never happens in the inhomogeneous case, where
the growth of ⇢G damps the oscillation amplitude, and
prevents ⇠ from becoming negative.

2.- For all couplings considered, either in the homo-
geneous or inhomogeneous regimes, inflation ends when
⇢EM becomes comparable to ⇢V, resulting in a Universe
already reheated at that moment, which is actually con-
sistent with previous preheating studies for ↵⇤ . 15 [49–
53]. In the homogeneous case, the number of extra efold-
ings is �Nbr ⇡ 3 for all couplings considered. In con-
trast, in the inhomogeneous dynamics, the number of ex-
tra efoldings grows strongly and monotonically with ↵⇤,
from �Nbr ⇡ 2 for ↵⇤ = 15 to �Nbr ⇡ 8 for ↵⇤ = 20.
For ↵⇤ = 15 inflation actually ends earlier in the inho-
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Gauge field also produces GW, �A+ �A ! h

More production
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However, more production ! smaller r =
hvacuum + hsourced

�vacuum + �sourced

(sourced GW ⌧ sourced ��)

General issue: how to increase hsourced more than �sourced ?

Barnaby et al 12; Mirababayi, Senatore, Silverstein, Zaldarriaga ’14;
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Figure 5. Power spectrum of the axion field � in the case of weak backreaction. Di↵erent colors correspond
to di↵erent times during the lattice simulation, as indicated by the legend. The final simulation result is
compared with the analytical prediction from the WKB approximation (red dashed line), that we computed
in appendix A.

4.3 Axion perturbation

Power spectrum

In fig. 5, we show the evolution of the power spectrum of the axion field, introduced in Fourier space
as 16 *

�(~k)

f

�(~k0)

f

+
=

2⇡2

k3
P�/f (k)�D(~k + ~k0) , (4.2)

where �D is the Dirac delta and k = |~k|.
The / k2 profile visible at the earlier times corresponds to the Bunch-Davies vacuum initial

conditions (3.6). The axion field is then enhanced due to the exponential growth of the gauge field, with
the most significant growth occurring betweenN = 0 andN = 2. The final profile has an enhancement
(a “bump”) corresponding to the scales that left the horizon during the simulation, namely while the
axion had a significant roll. We compare the final time lattice result with the analytical estimate
for the power spectrum, depicted as a dashed red line. We observe that the analytical estimate
correctly predicts the amplitude of the power spectrum. However, the analytical solution predicts
a di↵erent scale dependence. This discrepancy arises because the analytical calculation neglects the
time dependence of H, resulting in a di↵erent time dependence for ⇠. Specifically, scalar modes
enhanced at the beginning of the simulation (small k) are expected to have a larger amplitude due to
the higher value of ⇠ (see fig. 2). Conversely, modes excited later (large k) should exhibit a smaller
amplitude, corresponding to the lower value of ⇠.

Non-Gaussianity

The simulation allows us to access the real-space field distribution of the axion, as shown in fig. 6.
These simulation boxes can be used to compute the non-Gaussianity of scalar statistics. In the left
panel of fig. 7 , we present the 1-point probability density function (PDF) of the axion field at di↵erent
times during the simulation. The distributions are calculated as normalized histograms of the field
values across the N3

pts lattice points. We observe that the field distribution deviates significantly from
Gaussian statistics. In particular, we notice an exponential tail in the distribution. This behavior is

16Details on how we compute power spectra from the lattice simulation can be found in Refs. [105, 108].
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Figure 13. Power spectrum of the axion field � in the scenario of strong backreaction, depicted at various
times during the lattice simulation. The final simulation result (blue) is compared with the prediction from
the WKB approximation (red dashed line).
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Figure 14. Same as fig. 6, but in the case of strong backreaction, showing values of the axion field � across
a 2D slice of the simulation.

5.4 Curvature perturbation

We now come to the results for the comoving curvature perturbation, that we compute from the
lattice using the linear relation ⇣ = ���H/�̇.

Power spectrum

In fig. 16, we present the power spectrum of ⇣ at various times during the lattice simulation and
compare it to the WKB approximation at the final time. The scalar power spectrum is significantly
suppressed relative to the analytical estimate. This suppression is a consequence of the reduced
gauge field growth due to strong backreaction. The sourced contribution is still much larger than the
standard vacuum contribution P⇣,vacuum = 2⇥ 10�9.

Non-Gaussianity

We now discuss the non-Gaussianity of ⇣. In fig. 17, we present 2D snapshots from the simulation.
From the full 3D simulation boxes, we extract the 1-point PDF of ⇣ and its cumulants, as shown
in fig. 18. Non-Gaussianity of the observable ⇣ on super-horizon scales is large and non-trivial. In
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In fig. 16, we present the power spectrum of ⇣ at various times during the lattice simulation and
compare it to the WKB approximation at the final time. The scalar power spectrum is significantly
suppressed relative to the analytical estimate. This suppression is a consequence of the reduced
gauge field growth due to strong backreaction. The sourced contribution is still much larger than the
standard vacuum contribution P⇣,vacuum = 2⇥ 10�9.

Non-Gaussianity

We now discuss the non-Gaussianity of ⇣. In fig. 17, we present 2D snapshots from the simulation.
From the full 3D simulation boxes, we extract the 1-point PDF of ⇣ and its cumulants, as shown
in fig. 18. Non-Gaussianity of the observable ⇣ on super-horizon scales is large and non-trivial. In
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Right panel: Evolution of the cumulants defined in eq. (4.3).

similar to what occurs in the most minimal version of this model, where the inflaton coincides with
the axion [107].

To quantify the deviation from Gaussian statistics, we introduce the following dimensionless
cumulants [118]:
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,
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6 ⌘ h��6i � 10h��3i2 + 30h��2i3 � 15h��4ih��2i

h��2i3 ,

(4.3)

that all vanish in the Gaussian case. In the right panel of fig. 7, we show the evolution of these
cumulants during the simulation. We can see that higher-order cumulants are very large and do not
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Figure 15. Same as fig. 7, showing non-Gaussianity of � in the case of strong backreaction. The right panel
includes an inset that provides a detailed view of the region N > 2.5.
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Figure 16. Power spectrum of ⇣ in the case of strong backreaction. Di↵erent colors correspond to di↵erent
simulation times, while the red dashed line shows the analytical calculation.

particular, we observe that a large amount of non-Gaussianity is encoded in cumulants beyond the 3rd
order. This implies that the bispectrum will carry limited information about the statistical properties
of the primordial curvature fluctuation. This has crucial phenomenological implication, as we discuss
in the Conclusion (section 6).

5.5 Energy contributions

Finally, in fig. 19, we show the evolution of the various contributions to the energy density, which
source the evolution of the Universe through the Friedmann equations. We can see that, even in the
strong backreaction regime, the energy density of the Universe is dominated by the background inflaton
field. However, in this scenario, the mean energy density of the gauge field becomes comparable to
the kinetic energy of the axion field K� around N = 2. This indicates that the gauge field cannot
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Testing a chiral SGWB

3

(v) a CV-limited experiment. The corresponding in-
strumental parameters are given in Table I. Note that
the noise-equivalent temperature NET is related to the
temperature/polarization pixel-noise variances, σT/P , as

σ2
T /Npix = (NET)2/tobs, where σP =

√
2σT . We take

f0
sky = 1.0 (the fraction of the sky surveyed), and fsky =
0.7 (the fraction of the sky used in the analysis), for all ex-
periments, except for SPIDER, where f0

sky = fsky = 0.5.

FIG. 2: 1σ error on the gravitational chirality parameter ∆χ,
for five different CMB experiments, for the fiducial value of
∆χ = 0. The horizontal dotted line is at σ∆χ = 1 and repre-
sents maximal P violation. In the region above this line, the
chirality is non-detectable. The WMAP-5 curve lies entirely
above the non-detection line.

Fig. 2 shows the 1σ error of the estimate of ∆χ as
a function of tensor-to-scalar ratio r. The error in-
creases with decreasing r, which implies the existence
of a critical value of r below which a 1σ-level detection
becomes impossible even for maximal P violation (when
σ∆χ ≥ 1). This value is far above the current upper limit
for WMAP-5 (compare to Ref. [13]), and so WMAP-5
can give no constraints on chiral gravity. Prospects are
more optimistic for the next-generation CMB data re-
leases. The critical r is about 0.064 for SPIDER, 0.082
for Planck, 0.0079 for CMBPol, and 0.0023 for the CV-
limited experiment. If r is just below the current de-
tection limit of 0.22 [12], ∆χ will be detectable at the
1σ level if it is greater than 0.46, 0.51, 0.18, and 0.11
for these four instruments, respectively. If we consider
the 3σ confidence level, the corresponding minimum de-
tectable values are larger by a factor of ∼ 3.

To conclude this Section, we show how different mul-
tipoles l contribute to the sum of Eq. (6), separating the
contribution from TB and EB, in Fig. 3. In this plot, only
the TB/EB summands of Eq. (6) are plotted against l,
for r = 0.22, for SPIDER, Planck, and CMBPol. The off-

diagonal terms that contain the covariance between TB
and EB are negligible. The major contribution to σ−2

∆χ
for all five experiments comes from the TB power spec-
trum, from low multipoles, l ∼ 7. Thus, large angular
scales in TB (at l ≤ 10) contain most of the information
about gravitational chirality.

from TB
from EB

FIG. 3: Diagonal (TB,TB and EB,EB) summands of Eq. (6),
for r = 0.22, are plotted against the multipole l to show that
the constraint to ∆χ comes primarily from the TB power
spectrum at l ∼ 7.

III. CONSTRAINING COSMOLOGICAL
BIREFRINGENCE

Cosmological birefringence rotates the linear polariza-
tion at each point on the sky by an angle ∆α, and this
rotation induces TB/EB power spectra

CTB,rot
l = 2∆αCTE

l , CEB,rot
l = 2∆αCEE

l . (8)

The error σ∆α to which ∆α can be measured is given by

σ−2
∆α =

∑

l

∑

A,A′

∂CA
l

∂∆α

∂CA′

l

∂∆α
[Ξl

−1]AA′ . (9)

Using the same instrumental parameters as in §II B,
and for r = 0.22, we obtain the following 1σ errors for the
CB rotation angle: from WMAP-5, 3.2◦; from SPIDER,
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Measurement at ground-based interferometers

⌦L/R = ⌦0

⇣
f

f0

⌘↵

(1± p)

Figure 6: Forecast error in the measurement of the polarization factor p as a function of
the fiducial amplitude ⌦̄0 for a total observation time of T = 10 yrs. and di↵erent networks.
The left (resp., right) panel assumes an unpolarized fiducial signal with ↵ = 2/3, (resp., a
fully circularly polarized scale-invariant signal). The vertical line indicates the current upper
bound on the amplitude of ⌦0 [6].

that if the SGWB saturates the current bound, the existing LIGO-Virgo-KAGRA network
at the designed sensitivity will barely be able to constrain even anisotropies of order one
significantly. On the other hand, the next generation detectors, such as Einstein Telescope
and Cosmic Explorer, might be able to probe a O

�
10�3

�
anisotropy at the largest angular

scales (lowest `; figure 4 shows how the sensitivity worsens for higher multipoles).
As a comparison, anisotropies in the astrophysical SGWB can be estimated to be of the

order of 10�2 [38, 39] The anisotropies due to the propagation of primordial GWs are expected
to be below this level [12, 18–20], with a quadrupole amplitude �GW

2m '
p
C2 ' 3⇥ 10�5 [32].

3 Finally, the kinematic dipole, induced by the peculiar motion of the Earth, is of O
�
10�3

�
,

as we already discussed above in relation to figure 3.
To summarize, the anisotropies induced by astrophysical sources and the kinematic

e↵ect might be probed by the Einstein Telescope - Cosmic Explorer combination, while
the measurement of the anisotropy from the cosmological propagation appears to be more
challenging. Significantly improving over this will require more than just decreasing the
instrumental noise. Even in the ideal limit of vanishing instrumental noise, the sensitivity to
the subdominant anisotropic component is limited by the variance of the dominant monopole
contribution [30]. The curves shown in figures 3 and 6 show a marked change in their slope
from the left part at small ⌦̄0 and the right part at large ⌦̄0. This change in the slope is due
to the transition between a regime in which the variance of the measurement is dominated
by the instrumental noise to a regime in which it is dominated by the signal.4 For the
network configurations we have discussed, the measurement is in the noise-dominated regime
once the signal is constrained to be below the current upper limit. Assuming that futuristic
experiments will reach an ideal level of negligible instrumental noise, the variance of their
measurements will be due solely to that of the signal. The sensitivity to the anisotropy will
then reach the level that can be seen from the high-⌦̄0 portion of our figures. Our results
assume an observation period of 10 years. Improving over these limits will then require
increasing the observation period T , or the number of detectors N [30]. We recall that the

3Cosmological perturbations might be greater in certain cases, see e.g. [40–42].
4While both contributions to the variance are fully included in the results presented in this section, in

subsection 5.2 we show that the variance can be written in terms of relatively simple analytical expressions
in the limits in which it is fully dominated by either contribution.
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Figure 1: Predicted (square root of the) Power Spectral Density (PSD) of Advanced LIGO,
Advanced Virgo, KAGRA, Einstein Telescope, and Cosmic Explorer as a function of the
frequency. Data were taken from ref. [31]

the Earth), which generalizes the more common isotropic studies in which only the monopole
term is assumed. Due to the normalization of the spherical harmonics, we fix �00 =

p
4⇡ so

that the coe�cients �GW
`m encode the relative strength of the various multipoles relative to

the monopole. In our explicit analysis, we assume that only one given multipole is present,
with a magnitude much smaller than one, corresponding to a nearly isotropic signal.

For each interferometer i in the network (and for each channel in the case of triangular-
shaped detectors, which are made of multiple instruments), we take the data stream mi(t)
that results from the superposition of the GW signal and instrumental noise,

mi(t) = si(t) + ni(t) . (2.2)

We (window-)Fourier transform these functions and take every possible cross-correlation of
the data streams at di↵erent sites. We then integrate the cross-correlations in time, using
the assumption of a stationary SGWB, so that the statistics underlying the response of the
network of detectors is periodic with period Te = 1 day. We apply optimal filters, building a
set of unbiased observables

Cij,m /
Z 1

�1
dfmi(f)mj(f)Qm(f) , i 6= j , (2.3)

whose expectation value depends on the parameters in eq. (2.1). We consider typical values
↵ = 0 (from cosmology) and ↵ = 2/3 (from astrophysics) for the tilt of the signal. We
construct a �2 as a function of the amplitude of the signal ⌦0 and of the anisotropy param-
eter �GW

`m under consideration (namely, for a specific choice of ` and m). From the �2, we
forecast the uncertainties under which the network will measure these two quantities under
consideration.
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Measurement at ground-based interferometers
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⇣
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