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GW Sounding out the Universe
e As sirens for distance measures [— not this talk]

e As sonar, propagating through the universe:
— GW speed, mass, modified dispersion relation (MDR)
— Gravitational lensing, additional Morse phase information

— GW propagation echoed in PTA timing residuals

® 2203.13252: J.M. Ezquiaga, W. Hu, M. Lagos, M.X. Lin, F. Xu
2308.06616: J.M. Ezquiaga, W. Hu, R.K.L. Lo; PHAZAP
2408.11774: W. Hu, Q. Liang, M-X Lin, M. Trodden

PHAZAP + TENSIOMETER: w. G. Campailla, J.M. Ezquiaga, M. Raveri

e PHAZAP: A tool for extracting phase information from standard
parameter estimation pipelines

https://github.com/ezquiaga/phazap


https://arxiv.org/abs/2203.13252
https://arxiv.org/abs/2308.06616
https://arxiv.org/abs/2408.11774
https://agenda.infn.it/event/39805
https://github.com/ezquiaga/phazap

Propagation Eftfects

e Dispersion relation, small correction from GR (see Will; LVK analysis)

w? = k*(1 4 Ak*?)
— Special Cases:

e o = (: graviton mass term m,
o = 1:
phase velocity v, = w/k # 1
group velocity v, = Ow/0k ~ 1
e o = 2: change in GW speed v, = v, # 1
well constrained by binary NS with EM counterpart



Phase Shift

e Observable phase shift occurs when the group and phase velocity
differ (a« = 0, mass term)
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e Phase shift is degenerate (exactly for a = 1, partially for a # 1)
with binary orbital reference phase ¢, for the dominant
quadrupole mode ¢ = 2, m = 2 or (*227)



What’s Your Angle?

e Reference phase ¢, 1s one of many angles....
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defining the orientation of the binary system and the detector arms



What’s Your Angle?

e Reference phase ¢, 1s one of many angles....
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defining the orientation of the binary system and the detector arms
e Fun (?!) with Euler angles and tracking down definitions
e Phase shift is also partially degenerate with polarization angle

e PHAZAP uses this mapping to undo parameter estimation and to
(re)derive phases as seen by the detectors



Higher Modes

e With a high mass ratio (¢ = 0.1) and inclination away from
face-on/off, higher azimuthal modes (m = 3...)
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break the degeneracy with orbital reference phase ¢,

e Arrival times also shift if v, # 1




Phase Shift

e Total waveform summed over all modes

All modes m=10"%2%V/c2,z=0.5
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e Propagation time delay can make low frequency modes invert and
inspiral signal arrives after coalescence

e However, distinguishability requires high mass ratio, high SNR

e Also for single events can be confused with the Morse shift from
gravitational lensing...



Strong Gravitational Lensing

e As with optical lensing, multiple images/events from a single
source

e But with phase information (both 1n geometric optics, where
images don’t interfere, and wave optics)

e In geometric optics, the independent images/events are phase
shifted depending on which extrema of time delay



Morse Phase

e Morse phase:
I mmnmma=0 X 7
II: saddle = £ X

III: maxima=1 x 7

e Achromatic just like an o« = 1 propagation phase shift but at
specific values

e Searching for such propagation effects and waveform distortions
also searches for gravitational lensing

e Gravitational lensing could be confused with propagation effects



Single Event Detectability

e Distinguishability of phase shift vs binary parameters requires high
SNR p and high mass ratio

type II vs unlensed GR
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Modified Gravity vs Lensing Confusion

e Exactly degenerate with o = 1, partially with a« = 0 mass term

e Further confusion between modfied propagation and lensing
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e Requires even higher SNR to distinguish modified gravity from
lensing 1n single event



Multiple Images/Events

e Multiple events that are lensed should share the same binary
parameters

e Except for Morse phase shifted 22 reference phase ¢.of + nmw/2
and luminosity distance due to magnification

e Search for pairs of events that are Morse phase shift consistent
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Finding Events

e With 2 to 3 detectors LIGO (L,H), Virgo (V) base parameters are
highly degenerate and often multimodal, due again to detector vs
source reference frames

(a) Source (b) Earth detector

e Fast approaches are inefficient at comparing events

e Evidence based approaches are compute-intensive and Jeffreys
scale can be very conservative in rejecting lensing hypothesis



PHAZAP Reconstruction

e PHAZAP: reconstruct what the detectors see: phases at the
detectors as a function of frequency (see also Roulet et al)

Z, _ 7i
(=N

|
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e Requires only postprocessing of standard parameter estimation

e Uses all of information to infer reconstructed parameters,
regardless of what was or wasn’t measured 1n detectors, e.g. V
parameters when Virgo offline



PHAZAP Phases
e GW phase evolution at LIGO Hanford for the OG: GW 150914
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e Best measured at ~ 40Hz not f,.s = 20Hz and phase difference
Aoy = Pr00m, — Q201 better measured than chirp mass



PHAZAP I ocalization

e Time delays (in units of cycles) between detectors, HL and HV
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e 3 detectors — 2 rings intersecting: 1 above, 1 below detector plane



PHAZAP Change of Basis

e Original binary basis (lensing consistency related parameters)

2.1
3.1,

.78
/\./.\ 1.50™ 7

2.6419 32

304£1.0

1.75+0.54

. M 1.18610 024

20 26 27 30 33 1 2 1.1
L M. ra dec




PHAZAP Change of Basis

e PHAZAP basis (more Gaussian except those not detected in V)
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PHAZAP Parameter Difference

e For event pairs, where detectors have rotated with Earth between
events, choose a common basis for comparison

e Injected (not)lensed events
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PHAZAP on GWTC(C-3

e Candidates based on Gaussianized distance D ; of parameters

e PHAZAP highly correlated with intensive joint PE coherence ratio
CY compared with overlap method BY where all selected pairs
overlap by definition
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PHAZAP on GWTC-3

e PHAZAP selection efficiently rejects candidates which aren’t
lensing, compared with overlap

5.0 overlap

false positives
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TENSIOMETER

e Most of PHAZAP false positives are due to Gaussianizing poor
localization due to weak V(irgo) constraints
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TENSIOMETER

e Lacking V, degeneracy in LIGO HL time delays 1s broken by other
waveform information and rejects lensing
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TENSIOMETER

e TENSIOMETER learns difference posterior with normalizing flows,
integrates the model to find probability of parameter differences
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TENSIOMETER

e Ask Giulia and Marco for TENSIOMETER details over an espresso!

Multimodal

N

Long Tails

/

https://github.com/mraveri/tensiometer


https://github.com/mraveri/tensiometer

PTA Redshift

e Monochromatic GW
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e Pulses experience redshifts through integral of h along the path

e But the GW traveling at v, along k can lead or lag the pulse
propagating from the pulsar with n direction

A

vt = (k-n)z



PTA Redshift

e Monochromatic GW
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e Pulses experience redshifts through integral of h along the path

e But the GW traveling at v, along k can lead or lag the pulse
propagating from the pulsar with n direction
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PTA Redshift

e Monochromatic GW
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e Pulses experience redshifts through integral of h along the path

e But the GW traveling at v, along k can lead or lag the pulse
propagating from the pulsar with n direction
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PTA Redshift

e Monochromatic GW
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e Integrating a total derivative leaves only a dependence on
amplitude and phase of GW at pulsar and earth and

pulsar direction n

GW phase veloctiy v,



PTA Angular Correlations

e Generalized Hellings-Down curve 1',,, gives the correlated timing
residual between pulsars of different direction cosé = ny - ny

e Deviation from GR: v, — 1 =€ = 0.01
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Unresolved GW Background

e What if background is unresolved sources?

e A real source cannot produce a monochromatic plane wave (that
travels at v,), instead 1s a wave packet propagating at v,
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where the phase at the peak changes due to v,



Unresolved GW Background

e E.g. if wavepacket remains between pulsar and earth throughout
the pulse propagation: no pulsar/Earth term

e Nonetheless, each Fourier component of the wavepacket obeys the
monochromatic 1,

e Explicitly check that integrating over the wavepacket propagation
with the pulse gives same answer as superimposing the Fourier
components at pulsar and Earth

e Key: unlike a truly stochastic background, the Fourier modes must
be correlated

(R(f)R(f'))is not oc 6(f — f')

with arrival frequency determined by group, not phase, velocity v,

e In principle also changes the correlation of pulsar timing residuals



Binary Merger Signal

e Chirp, and more generally frequency content of GW waveform,
gives frequency correlation between arrival times

— GRFT

|—am il
| . tltaEf)50nHz)‘ {\ (\ {\ ﬂ (\ | | “




Binary Merger Signal

e Correlated frequencies of unresolved sources (unlike a fully

stochastic background) induces PTA correlations with different
ORFs
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Propagation Time Delay

e But propagation delay from group velocity dispersion between
frequencies make event more monochromatic for o = 0 mass term
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e Waveform distorted: reversed and stretched if group velocity
dispersion dominates at GW source large distances

e For o« = 0 mass term is a catch-22 (mode): when deviation 18
large, propagation effects make frequency evolution slow



Conclusions

e Propagation and phase effects test
— Fundamental physics of GW: dispersion relation
— Gravitational lensing

— Phase velocity of stochastic GWB in PTA

— In principle, group velocity for unresolved GW sources

e PHAZAP: useful tool for reconstructing phase information from PE
— Fast postprocessing of preexisting PE
— Choose detector phases optimally for single event
— Common nearly optimal basis for event pairs, echoes
— Fast Gaussianized rejection of inconsistent pairs

e TENSIOMETER normalizing flows for quantifying pair
probabilities for highly non-Gaussian and multimodal distributions



